前言:我们精心挑选了数篇优质通信管理论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:VXD实时串口通信
引言
在微软的视窗操作系统中,系统内核掌管所有的应用程序,通过独特的任务调度算法实现CPU的分时多任务处理方式。多任务处理对大多数用户可能是件好事,但是对那些想把实时通信建立在Windows操作系统上的特殊用户来说,操作界面的图形化并不比MS-DOS的单任务更具吸引力。在视窗操作系统里可以进行实时通信和控制码?答案是:VXD技术可以帮我们在获取友好的人机界面的同时还拥有很强的实时性。
1VXD技术解析
VXD技术可追溯到Windows3.1,它的引入就是要让操作系统实现多工以及硬件资源的共享。为了支持多个MS-DOS任务同时执行,Windows98让每个MS-DOS应用程序在各自的虚拟机(VM)上运行,各自互不相干;而所有的Widnows应用程序却都在一个虚拟机上运行。图1所示的结构框图很好地说明了Windows98的整体架构。
图1中,由众多的VXD组成系统级代码处于最底层。其中,处于中心地位的是一名为VMM32的VXD,它负责协调和管理所有的VXDs。其它VXDs则通过消息机制(这个消息机制由VMM32.VXD来维护)彼此联系。由所有VXDs开放出的服务接口(API)组成了一个服务网,它们彼此通过合作的方式,提供Windows98的系统底层驱动服务。
从以上Windows98系统架构可以看出,要想在视窗平台下获取很强的实时性,仅靠提升应用程序线程优先级的方法是不够的。因为Win32应用程序代码属于Ring3级,而VXD代码则属于Ring0级;采用VXD撰写的实时通信程序可以完全不受代码限制,可以直接对硬件进行操作。VXD的这个特点正是实时通信建立所必须的。
设计实时通信的VXD前,先解释以下几个问题:
①VMM32使用VPICD.VXD虚拟化每个硬件和软件中断。VMM32为每个虚拟机(VM)维护一个IDT结构,当中断发生时,CPU先保护中断现场,然后经由当前VM的IDT把这个中断引导至相应的中断处理程式。
中断的虚拟化,使我们有机会给每个中断提供新的中断处理函数,并可以让多个硬件共享同一个中断号。VPICD.VXD为我们提供这些服务。
②VMM有两个调度器,用以在多个线程和VMs之间实现抢占式多工。主调度器负责选定下一个将被执行的线程。这个选择可以是一个,也可以是多个。然后,主调度器把选择结果送给所谓的时间片调度器,并由后者完成各个应用程序间的时间片分配。调度器也时应用程序经由呼叫Win32线程优先调整API(如SetThreadPriority和SetPriorityClass等)做出回应。当中断发生时,VMM32自动提升中断处理函数所在VM之优先级,保证中断处理函数能及时被执行。
③VXD和Win32应用程序可直接通信。Win32应用程序可通过一个系统API(DevicelOControl(…))来呼叫位于底层的VXD为其服务。在呼叫VXD前,首先必须调用CreatFile(…)这个API加载该VXD(如果该VXD是一个静态VXD,则不用加载)。所有的呼叫动作其实都通过VMM32完成。VXD也可以通过消息方式和位于上层的Win32应用程序通信。She11.VXD为所有希望以消息机制和Win32应用程序通信的VXD提供了这一服务。
以上是编写一个串口通信驱动需要的系统层面知识。对于Windows底层的了解。
2用VXD实现一个实时串口通信驱动
接下来用VXD技术实现一个实时串行通信的驱动。这个VXD是一个动态(Dynamic)VXD,当它的服务被呼叫时,VMM32会动态加载这个VXD。作者采用的工具是C+98DDK。当然也可以使用其它的工具,如MASM6.11(或更高版本)、VtoolsD。用C搭配DDK完成VXD构建的好处是,可以使用C语言完成绝大部分的程序,程序比较容易阅读和维护。
用C来实现一个VXD驱动,需要准备如下条件:一个.ASM的汇编语言接口文件(在其中定义VXD要处理的系统消息和输出API),一个.C的函数实现文件(在其中完成自己函数实体),一个.DEF的定义文件(在其中定义VXD中各个段的别名并汇成一个DDB)和一个.MAK档(用来编译并连接生成VXD,可有可无)。在这里,仅给出用C实现的函数档。至于其它的文件,可以从本文所列的参考书目或其它文献中找到相关文档的说明。
这个串口通信驱动程序的功能是:实时送出一个Byte的数据,实时接收一个Byte的数据。作为演示之用,并没有加入其它代码。该VXD驱动主要由如下3个系统消息(由VMM32来维护和管理)处理函数组成,其代码如下:
(1)OnSysDynamicDeviceInit()函数
BOOLOnSysDynamicDeviceInit()
{//OnSysDynamicDeviceInit
irqhandle=VPICD_Virtualize_IRQ((DWORD)(&irq4));
if(irqhandle==0){
returnFALSE;
}
returnTRUE;//OnSysDynamicDeviceInit
}
该函数用来完成VXD初始化所做的工作。在本例中,由于实时监视串口中断的需要,要给COM1的中断安装一个自定义的断服务函数。98DDK已经提供了这个函数的C语言版,其原型是HIRQstaticVPICD_Virtualize_IRQ(PVIDpvid),在vpicd.h中。该函数需要一个指针作为参数(指向名为VPICD_IRQ_Descriptor的结构体),函数传回一个指向该虚拟IRQ的句柄(该句柄在后来的VPICD服务中需要提供)。VPICD_IRQ_Descriptor结构体的组成为:
typedefstructVPICD_IRQ_Descriptor{
USHORTVID_IRQ_Number;//IRQ号(0~15)
USHORTVID_Options;//标志位选项
ULONGVID_Hw_Int_Proc;//硬件中断服务程序的地址
ULONGVID_Virt_Int_Proc;//虚拟中断服务程序
ULONGVID_Mask_Change_Proc//MaskChange调用例程
ULONGVID_IRET_Proc;//IRET调用例程
ULONGVID_IRET_Time_Out;//在Vm的进程优先级提升之前的最大等待时间
ULONGVID_Hw_Int_Ref;//硬件中断服务程序的数据存放地址
}VID;
其中只用到三位。在本例中需要声明一个名为irq4的全局变量为VID结构,并付给如下初值:VIDirq4={4,0,hwproc,0,0,0,0,500,0},表示将要虚拟化IRQ4,改变其中断处理函数为voidhwproc(void),该函数的原型如下:
voidhwproc(void){
_asm{
movdx,0x3f8
inal,dx
movbyteptr[readin],al
clc
}
return;
}
在这个中断处理中,仅仅从COM1的数据寄存器(地址为3F8h)中读取接收到的数值,并把该数值存放在一个类型为BYTE、名为readin的内存中。
(2)OnSysDynamicDeviceExit()函数
BOOLOnSysDynamicDeviceExit()
{
VPICD_Force_Default_Behavior(irqhandle);
//解除IRQ4虚拟化
returnTRUE;
}//OnSysDynamicDeviceExit
该数提供了用于善后处理VXD在卸载时需要完成的事件。在本例中,和VXD初始化对应,需要解除对COM1的中断IRQ4的虚拟化。作者也是用98DDK在vpicd.h中提供的外包函数voidstatic_inlineVPICD_Force_Default_Behavior(HIRQhirp)。该函数唯一需要的参数便是使用VPICD_Virtualize_IRQ函数传回的IRQ句柄。
(3)OnDeviceIoControl()函数
DWORDOnDeviceIoControl(PDIOCPARAMETERSp){
Switch(p->dwIoControlCode)
{
case1://端口写功能
if(!p->lpvOutBuffer||p->cbOutBuffer<1)
{//输出缓存的有效性检查
returnERROR_INVALID_PARAMETER;
}
if(serial_out((DWORD)(p->lpvInBuffer)))
{//数据发送
*(BYTE*)(p->lpvOutBuffer)=*(BYTE*)(p->lpvInBuffer);
}
else{
*(BYTE*)(p->lpvOutBuffer)=0;
}
open_int();//打开com1中断
return0;
case2://端口读功能
if(*(BYTE*)reading==0x00)
{//数据读入
*(BYTE*)(p->lpvOutBuffer)=0x00;
return0;
}
*(BTYE*)(p->lpvOutBuffer)=*(BYTE*)(readin);
return0;
}
return0;
}
return0;
}
OnDeviceIoControl函数用来处理Win32应用程序对VXD的呼叫。Win32应用程序的呼叫会让VMM32送给该VXD一个系统信息,并传递进一个DIOCPARAMETERS结构的指针。该结构里包含Win32应用程序呼叫时传递进来的各个参数。这个结构的组成如下:
TypedefstunctDIOCParams{
DWORDInternall;//指向客户寄存器的指针
DWORDVMHande;//该VM的句柄
DWORDInternal2;//指向DDB结构的指针
DWORDdwIoConrolCode;//DeviceIoControl例程中呼叫的控制码
DWODlpvInBuffer;//DeviceIoControl例程呼叫所传递进来的输入缓冲区地址
DWORDcbInBuffer;//输入缓冲区的大小
DWORDlpvOutBuffer;//DeviceIoControl例程呼叫所传递进来的输出缓冲区地址
DWORDcbOutBuffer;//输出缓冲区的大小
DWORDlpcbBytesReturned;//拷贝到输出缓冲区中的字节数(可以为NULL)
DWORDlpOverlapped;//DeviceIoControl例程呼叫所传递进来的重叠I/O块结构
DWORDhDevice;//Ring3层呼叫应用程序句柄
DWORDtagProcess;//例程标签
}
DIOPARAMETERS;
其中,dwIoControlCode指明了Win32应用程序需要VXD提供的哪一项服务。在本例中采用一个switch-case语句作为服务入口,如下所示。其中服务1为让串口送出一个字节,服务2为读取一个已经由串口接收的字节。函数open_int()是用来初始化串口以便接收字节数据;函数BOOLserial_out(DWORDpBuffer)是让串口发出一个字节。它们的函数体分别如下:
BOOLserial_out(DWORDpBuffer){
if(pBuffer==NULL){
returnFALSE;
}
_asm{
pushfd
cli
pusheax
pushedx
movdx,0x3fb;设置COM1的波特率
moval,0x83
outdx,al
movdx,0x3f8
moval,12
outdx,al
movdx,0x3f9
moval,0
outdx,al
movdx,0x3fb;设置COM1的线控项
moval,3
outdx,al
movdx,0x3f9;CMM1关中断
moval,0
outdx,al
movdx,0x3fa;关闭com1的FIFO功能
moval,0
outdx,al
movdx,0x3f8;字节发送
moval,byteptr[pBuffer]
outdx,al
popedx
popeax
popfd
sti
}
returnTRUE;
}
serial_out这个函数体的实现是用汇编语言实现的。因为涉及到很多的端口提供以及CPU的标志(flag)和压栈操作,因此考虑到用汇编语言编写会简化代码。因为此串口传输中,用到了关闭中断的指令(cli),所以,当写操作所要求完成的任务很多时,此关中断指令会让程序的实时性很好地体现出来,但cli指令有效时间过长会导致系统问题,所以还是要谨慎使用。
Voidopen_int(void){
_asm{
movdx,0x3f9;COM1开中断
moval,0x05
outdx,al
}
return;
}
open_int函数用来把PC串口的中断设备按照需要设立起来。函数体很简单,仅改变了地址为3F9h的内容,意为设置Rxdataready和Linestatus中断位,以便让CPU可以及时在COM1的中断服务程序里读取串口接收到的字节。
以上涉及到串口输入和输出的函数体实现代码中,用到了PC16550UART的资料。
至此,一个可用于实时串口通信的VXD驱动程序已经完成。由于篇幅所限,不能将其它必要的文档一同提出来讨论。
3Win32客户测试程序
有了上述VXD驱动程序,还需要搭配一个Win32客户程序来进行测试。在网络补充版中,给出一个笔者在VC6下编制的一个控制台应用程序片断,以供参考。
现在编制VXD驱动还没有一个集成开发环境(IDE)。本文的驱动程序是用VC6.0自带的编译器编译的。由于要编译汇编文档,所以还需要把一个MASM汇编器(要求6.0以上版本)及其相关文档拷贝到VC6.0的vc98\u30446目录下。
关键词:NRZHDB3单片机E1收发芯片DS2153Q
常用的NRZ码不适合在高速长距离数据通信的信道中传输,因而选用了另外一种编码—HDB3码。HDB3码是串行数据传输的一种重要编码方式。和最常用的NRZ码相比,HDB3具有很多优点,例如:消除了NRZ码的直流成分,具有时钟恢复更好的抗干扰性能,这使它更适合于长距离信道传输。
E1信号选用HDB3编码方式,速率2.048Mbps,可以在特性阻抗120Ω的RJ45平衡双绞线上传输1.5km,能够满足大多数情况下数据的高速长距离传输。在数据速率小于2.048Mbps的高速速率时,可以通过插入额外数据比特提高数据数率。E1收发芯片DS2153Q完全符合E1信号标准,而且具备微控制器接口,大大提高了该芯片的可用性。
E1有成帧、成复帧与不成帧三种方式。在成帧的E1中,第0时隙用于传输帧同步数据,其余31个时隙可以用于传输有效数据;在成复帧的E1中,除了第0时时隙外,第16时隙是用于传输信令的,只有第1~15,第17~31共30个时隙可用于传输有效数据;而在不成帧的E1中,所有32个时隙都可用于传输有效数据。本文提出的NRZHDB3码制转换器的E1工作在不成帧方式,也就是说E1的32个时隙均用于传输有效数据。
1E1收发芯片DS2153Q简述
DS2153Q是Dallas公司的T1/E1收发芯片,符合最新的E1线路标准,包括ITUG.703、G.704、G.706、G.823、I.431、ETSI300011、300233、TBR12和TBR13等,该芯片能完成NRZ和HDB3码间的相互转换,码率可达2.048Mb/s,而且在片内集成了接收NRZ码的数据时将恢复电路,更有利于后级接收电路。片内D/A能够实现G.703标准的输出波形,适用于75Ω和120Ω特性阻抗的双绞线,并且具有完善的数据流状态监测功能,可以实时指示数据流的传输状况。
DS2153Q的微控制器接口使其可以很容易与单片机等MCU接口连接。其内部的71个8位寄存器使用户可以通过MCU对DS2135Q进行功能配置和状态监测这些寄存器主要有接收控制寄存器、发送控制寄存器通用控制寄存器、中断屏蔽寄存器和工作状态寄存器图1为DS2135Q的内部结构图。
2码制转换器电路设计
NRZ-DB3码制转换器为NRZ码到HDB3码和HDB3码到NRZ码的转换,设计选用专用E1收到芯片DS2153Q和单片机AT89C51实现该码制的转换功能。该码制转换器把输入的NRZ转换为HDB3码输出,同时接收E1线路上的数据转换成HRZ码,并恢复出数据时钟,供后级数据接收单元使用。
AT89C51为Atmel公司的8位单片机,负责控制通信芯片DS2153Q的工作模式和状态监,使其完成NRZ码到HDB3码和HDB3码到HRZ码的转换。同时,该单片机的电路还包括μP监控电路IMP813L,用于提高码制转换器工作的抗干扰能力和可靠性。
图2是该码制转换器的结构框图。
DS2153Q的并行数据/地址线与单片机的P0口相连;片选信号选用单片机的P2.0;单片机的读写信号与DS2153Q的读写信号相连;同时,DS2153的两个中断申请线与单片机的INT0和INT1相连。这样DS2153Q可以通过中断的方式及时通知单片机自身的工作状态。AT89C51与DS2153Q的电路连接图如图3所示,通过以上的硬连接,实现单片机对DS2153Q的控制和状态监控。
图3AT89C51与DS2153Q电路连接图
该码制转换器选用IMP813L作为μP监控电路,实现可靠上电复位和看门狗控制。DS2153Q的时钟信号是通过对单片机时钟信号的二分频来实现的。单片机选用16.384MHz的时钟信号,使用74HC74二分频后,得到8.192MHz的频率信号作为DS2153Q输入时钟。
在DS2153Q的电路设计中,为了使其工作在不成帧方式,发送的数据全部从TSER引脚输入,需要将引脚TLINK和TSER短接。发光二极管用于转换器的工作指示,可以直观判断当前数据转换是否正常。
该码制转换器使用特性阻抗120Ω的RJ45平衡双绞线进行数据传输,DS2153Q收发电路如图4所示,传输变压器输入输出匝数比为1:1.36。
3单片机控制程序设计
转换器单片机控制程序包括两部分:DS2153Q的功能配置和DS2153Q工作状态监控。DS2153Q的功能配置实现HDB3码的正常动作;DS2153Q工作状态监控用来实时获得当前转换器是否工作正常,并及时上报和指示。
3.1DS2153Q功能配置
转换器上电后,首先由μP监控电路进行有效复位,保证单片机的正常初始化,一单片机即进入通信芯片DS2153Q的配置过程。
①初始化测试寄存器,向相应测试寄存器写0即写。
②进行接收控制存器(RCR)的配置,包括接收帧模式、自动重同步使能、重同步准则和接收动态存储功能等,使DS2153Q接收单片工作在AutoResync、DisableElasticStore。
③进行发送控制存器(TCR)的配置,包括发送帧模式、自动设置故障位和16位引脚的功能选择等,使DS2153Q发送单元工作在E-bitsnotautomaticallysetinthetransmitdirection,并根据当前转换模式的不同设置16引脚的功能,0=ReceiveLossofSync(RLOS)、1=LossofTransmitClock(LOTC)。
④进行通用控制存器(CCR)的配置,使能DS2153Q、HDB3码的接收和发送、配置错误计数器更新时间、禁止动态存储发送数据等。
⑤初始化中断屏蔽寄存器,使能接收载波丢失、接收失步中断、接收数据全0和全1中断,使能发送时钟丢失中断,通过这些中断使单片机可以及时得知DS2153Q的工作状态,实现单片机对其的实施监测。
⑥初始化传输线接口单元,向LIRST数据位写0,然后写1,使传输线接口进入正常工作模式。
⑦初始化传输线接口控制寄存器,包括传输波形选择、接收均衡器增益选择、抗抖动抑器选择等。
单片机控制流程如图5所示。
下面是DS2153Q的功能配置程序(部分)。
;*****************************************************;
MOVA,02H
MOVDPTR,#RCR1
MOVX@DPTR,A;写寄存器RCR1,使能自动重新同步
NOP
MOVA,#04H
MOVDPTR,#RCR2
MOVX@DPTR,A;写寄存器RCR2,禁止弹性存储功能
NOP
MOVA,#41H
MOVDPTR,#TCR1
MOVX@DPTR,A;写寄存器TCR1,TSYNC为输出方式
NOP
MOVA,#0F9H
MOVDPTR,#TCR2
MOVX@DPTR,A;写寄存器TCR2,E数据位禁止自动置位
NOP
MOVA,#44H
MOVDPTR,#CCR1
MOVX@DPTR,A;写寄存器CCR1,允许接收和发
NOP;HDB3码
NOVA,#00H
MOVDPTR,#CCR2
MOVX@DPTR,A;写寄存器CCR2,配置错误计数寄存器
NOP
;********************************************************
3.2DS2153Q状态监控设计
在完成DS2153Q的寄存器配置后,单片机即进入传输状态监测程序,实时监控DS2153Q的工作正常与否,包括状态寄存器的读取和DS2153Q中断的响应,并从中判断故障、及时通报。
(1)发送状态监控
DS2153Q的发送状态监控是通过单片机的INT1来实现的。当状态寄存器的发送状态位置1,则DS2153Q产生中断,片机响应该中断来读取当前状态寄存器的故障位。当读取完毕后,需要向该状态寄存器特定状态位写1,保证以后的故障可以正确置位。
下面给出了NRZ发送时钟丢失故障的状态监控程序(中断1处理程序)。
MOVDPTR,#SR2;读DS2153Q状态寄存器2
NOP
MOVXA,@DPTR
ANLA,#04H
JNZERROR
SJMPFAVER
ERROR:SETBERR_SR
SJMPLOCKE
FAVER:CLRERR_SR
LOCKE:JNBERR_SR,WORK;判断发送数据时钟丢失与否
SETBP1.0;故障,工作指示二极管灭
SJMPEVER
WORK:CLRP1.0;正常,工作指示二极管亮
EVER:MOVDPTR,#SR2
MOVA,#04H
MOVX@DPTR,A
RETI
(2)接收状态监控
DS2153Q的接收状态监控是通过单片机的INT0来实现的。当状态寄存器的发送状态位置1,则DS2153Q产生中断,单片机响应该中断来读取当前状态寄存器的故障位。当读取完毕后,需要向该状态寄存器的特定状态位写1,保证以后的故障可以正确置位。
下面给出了HDB3码接收载波丢失故障的状态监控程序(中断0处理程序)。
MOVDPTR,#SR1;读DS2153Q状态寄存器21
NOP
MOVXA,@DPTR
ANLA,#02H
JNZERROR
SJMPFAVER
EPPOR:SETBERR_SR
SJMPLOCKE
FAVER:CLRERR_SR
LOCKE:JNBERR_SR,WORK;判断接收载波丢失与否
SETBP1.0;故障,工作指示二极管灭
SJMPEVER
WORK:CLRP1.0;正常,工作指示二极管亮
EVER:MOVDPTR,#SR1
MOVA,#02H
MOVX@DPTR,A
RETI
关键词:多通道缓冲串行口McBSPTMS320C5402μPD780308SPIDSP
1引言
随着信息技术革命的深入和计算机技术的飞速发展,DSP技术也正以极快的速度被应用到科技和国民经济的各信领域。在很多工程开发设计中,由于要求实现单片DSP与单片DSP、多片DSP芯片以及及其它处理芯片之间的通信,因此,怎样更高效、更便捷的实现这些通信,已成为广大DSP应用者首先要解决的一个问题。
本文根据笔者在工程应用和调试方面用TI的DSPTMS320C5402与NEC的μPD780308单片机进行通信的经验,介绍并讨论了将TMS320C5402DSP的多通道缓冲串行口McBSP(Multi-channelBufferedSerialPort)配置为SPI模式(即时钟停止模式),从而实现DSP与其它单片处理器之间的通信设计方法同时给出了实现方法的部分程序代码。
2多通道缓冲串行口McBSP
多通道缓冲串行口McBSP的功能是提供器件内外数据的串行交换。同以前的串口相比,McBSP串口具有相当大的灵活性。表1给出了有关TMS320C5402的McBSP管脚说明。其中串口接收、发送时钟和同步帧信号既可由外部设备提供,又可由内部时钟发生器提供,从而大大的提高了通信的灵活性。
表1TMS320C5402的有关McBSP管脚说明
管脚说明说明
DR数据输入端
DX数据输出端
CLKR接收数据位时钟
CLKX发送数据位时钟
FSR接收数据帧时钟
FSX发送数据帧时钟
CLKS外部提供的采样率发生器时钟源
3SPI协议中的McBSP时钟停止模式
SPI协议是以主从方式工作的,这种模式通常有一个主设备和一个或多个从设备,其接口包括以下四种信号:
(1)串行数据输入(也称为主进从出,或MISO);
(2)串行数据输出(也称为主出从进,或MOSI);
(3)串行移位时钟(也称为SCK);
(4)从使能信号(也称为SS)。
图1为设备的SPI接口示意图。该接口在工作时,主设备通过提供移位时钟和从使能信号来控制信息的流动。从使能信号是一个可选的高低电平,它可以激活从设备(在没有时钟提供的情况下)的串行输入和输出。在没有专门的从使能信号的情况下,主从设备之间的通信则由移位时钟的有无来决定,在这种连接方式下,从设备必须自始至终保持激活状态,而且从设备只能是一个,不能为多个。
TMS320C5402提供的时钟停止模式可用于SPI协议通信,当McBSP被配置为时钟停止模式时,发送器和接收器在内部是同步的,即可将发送数据帧时钟(FSX)用作从使能(即SS),而将发送数据位时钟(CLKX)用作SPI协议中SCK。由于收数据位时钟(CLKR)和接收数据帧时钟(FSR)在内部与FSX和CLKX是相连的,因此,该管脚不能用于SPI模式。
当McBSP被配置为一个主设备时,传送输出信号(BDX)被用作SPI协议的MOSI信号,而接收输入信号(BDR)则被用作MISO信号。图2所示为McBSP用作主设备时的SPI接口示意图。
同样地,当McBSP被配置为一个从设备时,BDX被用作MISO信号,BDR则被用作MOSI信号。图3为McBSP用作从设备的SPI接口示意图。
当TMS320C5402的McBSP被用于时钟停止模式时,寄存器SPCR1的CLKSTP位域和引脚配置寄存器的CLKXP位的配置如表2所列。
表2时钟停止模式配置
CLKSTPCLKXP说明
0XX不可用时钟停止模式。时钟被激活用于非SPI模式
100时钟开始于上升沿(无延迟)
110时钟开始于上升沿(有延迟)
101时钟开始于下降沿(无延迟)
111时钟开始于下降沿(有延迟)
4其它有关寄存器的配置
为了更好地掌握和了解McBSP作为SPI设备时的有关寄存器配置,现以McBSP作为SPI从设备来介绍有关McBSP的其它有关寄存器的配置,若McBSP做为SPI主设备,则相关配置正好相反。当McBSP作为SPI从设备时,主设备外部产生主时钟。CLKX引脚和FSX引脚必须被设置为输入。由于CLKX引脚和CLKR信号在内部相连接,因而传送和接收回路均由外部主时钟计时(CLKX)。同时,由于FSX引脚和FSR信号也已在内部连接,因此,CLKR引脚和FSR引脚不再需要外部信号的连接。
尽管CLKX信号由主设备外部产生且与McBSP同步,但是,McBSP的采样率发生器仍然必须正确启动SPI从设备,同时,采样率发生器还应被设置为最大速率(CPU时钟速率的一半)。另外,内部采样率时钟常被用来同步McBSP逻辑和外部主时钟以及从使能信号。每次传送时,McBSP一般在从使能信号的上升沿进行FSX输入。也就是说,在每次传送的开始,主设备必须维护使能信号,而在每次传送完成后,则必须消除从使能信号。在两次传送之间,从使能信号不能一直保持为高电平。对正确的SPI从设备而言,McBSP的数据延迟参数必须设置为0,在这种运行模式中,设置值为1或2没有定义。配置McBSP为从设备所需的寄存器位值如表3所列。
表3SPI操作模式下的寄存器位值表
位域值功能描述寄存器
CLKXM0配置BCLKX引脚为输入PCR
CLKSM1由CPU时钟产生的采样率时钟SRGR2
CLKGDV1为采样率时钟选择2的划分因素SRGR1
FSXM0配置BFSX引脚为输入PCR
FSGM0对每个包传送,BFSX信号被激活SRGR2
FSXP1配置BFSX引脚为活动低电平PCR
XDATDLY0为SPI从设备运行,必须为0XCR2
RDATDLY0为SPI从设备运行,必须为0RCR2
5程序设计
下面是有关TMS320C5402器件的McBSP各个控制寄存器的配置,该配置程序笔者在实践中已经过测试,并已成功运用在了某工程设计中。
VoidMcBSP1_Config(void)
{
offlset=0x0000;
SPCR11=0x1800;;配置串口时钟停止模式CLKSTP=10
offlset=0x0001;
SPCR21=0x0222;
offlset=0x0005;
SRGR11=0x00FA;
offlset=0x0007;
SRGR21=0xa00F;
offlset=0x0002;
RCR11=0x0040;;接收一帧含一字,一字含16位
offlset=0x0003;
RCR21=0x0044;接收数据无延迟RDATDLY=00
offlset=0x0004;
XCR11=0x0040;;发送一帧含一字,一字含16位
offlset=0x0005;
XCR21=0x0044;;发送数据无延迟XDATDLY=00
offlset=0x000E;
PCR1=0x000;;发送时钟由外部时钟驱动,CLKX为输入脚CLKX=0,发送时钟极性CLKXP=0,发送帧同步极性FSXP=1
offlset=0x0008;
MCR11=0x0001;
offlset=0x0009;
MCR21=0x0001;
offlset=0x000C;
XCERA1=0x0003;
offlset=0x0001;
SPCR21=0x0262;
offlset=0x0001;
SPCR21=0x0263;
offlset=0x0000;
SPCR11=0x1801;;接收器有效
offlset=0x0001;
SPCR21=0x02e3;;发送器有效
Return;
}
本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。