美章网 精品范文 离散数学论文范文

离散数学论文范文

前言:我们精心挑选了数篇优质离散数学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

离散数学论文

第1篇

关键词:离散数学;实验教学;实践能力

离散数学课程所涉及的概念、理论和方法,大量地应用在计算机科学体系中,数理逻辑是计算机中的逻辑学、逻辑电路、人工智能的基础课程,集合与关系是数据结构、数据库系统的理论基础,而代数系统则是现实世界的缩影,直接模拟了现实系统,图论知识更是直接应用在计算机网络、数据结构、编译原理等专业课程中。但传统教学中过于注重理论教学而忽略实践,学生普遍认为枯燥难懂,认为是纯粹的数学课程,对计算机编程用处不大。因此教师在授课过程中要注重理论联系实践,培养学生的专业素养,我们将从以下方面循序渐进加强教学理论与实践。

1课程教学注重教学方法与教学实践的改革与创新

加强理论联系实际,从提高计算机编程思想的角度对学生展开教学,教师在讲解理论的同时,要注重其实际应用与算法描述。例如在讲解最短路径时,就要介绍Dijkstra算法,单源最短路径的基本思想如下:设S为最短距离已确定的顶点集(看作红点集),V-S是最短距离尚未确定的顶点集(看作蓝点集)。

①初始化:只有源点s的最短距离是已知的(SD(s)=0),故红点集S={s},蓝点集为空。

②重复以下工作,按路径长度递增次序产生各顶点最短路径:在当前蓝点集中选择一个最短距离最小的蓝点来扩充红点集,以保证算法按路径长度递增的次序产生各顶点的最短路径。当蓝点集中仅剩下最短距离为∞的蓝点,或者所有蓝点已扩充到红点集时,s到所有顶点的最短路径就求出来了。

我们通过实例给学生模拟算法执行过程,验证算法的正确性,但细心的学生会发现前面加进去的点并不一定是后期考察路径的必经点,例如有三个点A,B,C,AB、BC、AC间权值分别为1,2,4,如果设A为源点,则第一次加进来的点是B,到C的最短路径应该是A-B-C,如果BC权值为4,则到C的最短路径应该是A-C,这里就要注意红点集加入的点不是其他点必经点,这是因为集合元素是无序的,不是联结已有的点作为最后点的路径的。

我们给出求解的动画演示过程,加深学生的认识,实际多应用在交通网络中路径的查询中,两地之间是否有路径以及如果有多条路径时找最短路径等,最后再对算法进行扩展解决单目标最短路径问题、单顶点对间最短路径问题等,扩展学生对算法的理解等。

在讲解逻辑推理时,建议学生使用Prolog语言可以轻松实现命题和联结词表示以及逻辑推理,代数系统则是无处不再,自动售货机、电梯系统、自动取款机等都是一个代数系统,有自己的运算关系,鼓励学生定义一些运算,完成一个具有输入输出的可交互的系统。

2建设完善实验课程体系,加强学生实验实践能力

挖掘课程内容,建设完善的实验课程体系,实验课程的主要目的是,培养学生的数学建模能力、算法设计能力、编写程序能力和应用创新能力,使学生养成良好的数学素质。学生可以有选择地做。

(1)基础实验如表1所示,基础实验设计一些离散数学基本问题,要求学生利用所学基础知识,完成相应的算法设计和程序实现。如在集合论部分,设计有限集基本运算算法设计实验,要求学生利用熟悉的程序设计语言完成有限集合的数据结构、集合间的交、并、差、迪卡尔积、子集判断等基本运算。学生可以在每部分中自由选部分题,完成一定的基础实验。这样的设计使得学生学会基本操作,巩固程序设计基本调试方法的掌握。

(2)综合性实验如表2所示,设计一些比较复杂的离散数学问题,要求学生综合运用各章知识或多学科知识,完成问题的分解与求解、综合和整体实现。例数理逻辑部分的命题真值表计算实验中,要求学生设计实现命题数据结构、五种基本逻辑运算的代数运算转换、表达式求值等;学生需要综合运用命题逻辑、数据结构等知识,完成实验各个环节,实现运算结果的显示。可由几个同学组成一个学习小组完成实验。

(3)设计性实验如表3所示。这一层次要求较高,对那些学有余力、兴趣浓厚的学生,给出一些难度较高的课题,要求他们自行设计问题描述模型和实验方案,开发实现小型应用软件。例如,要求学生针对某景区内景点的分布情况,设计可满足旅游者不同需求(如费用最省、线路最短、重复较少、景点最全等各种要求)的实用小软件。教师检查实验现象和实验结果。学生对实际程序的运行结果应能进行分析并提出改进方法,每完成一个实验,都要求写一份实验报告,挑选出好的作品,做成精品演示系统。

3发现实际应用点,扩大学生知识面

让学生了解离散数学在现实生活中的主要应用,有意识地引导学生运用所学理论去分析问题、解决问题,从而让学生充分感受到离散数学这门课程的魅力和实用价值。部分实际应用如表3所示。鼓励学生按照如下流程操作:发现问题,然后构思一个可能求解该问题的算法过程,再设计算法并将其表达为一道可执行程序,最后精确地评价这个程序,考查其作为一种工具去求解其它问题的潜能,锻炼学生数学建模能力,提高分析问题,解决问题的能力。

4建设开放式教学环境,丰富网络教学资源

充分利用网络学堂、课程学习网站等丰富的教学资源,构建了开放式的教学环境,我们开发了离散数学教学网站,模块包括:实验、实验申请、已审核实验、成果展示、精品展示、在线解答(前台如图1所示,后台如图2所示)、资料下载等模块,实验项目可选或自拟,增强了师生间互动,也为学生个性化学习提供了良好的条件。

学生可以在任何时间远程登陆,发表咨询,下载资料,参与实验项目,申请实验项目,获得批准后,我们开放实验室免费提供设备,实验项目结题后提交成果,我们从中提炼出精品,做成精品演示系统,学生还可以对已有成果做深入研究。

总之,鼓励学生吃透书本,挖掘理论的应用领域,鼓励学生改进算法、挖掘应用点,从抽象的理论到实际应用,再扩大应用,抽象到一般情况,让学生感觉到学习离散数学的重要性,理论与实践相结合,互相促进,切实提高大家学习离散数学的兴趣,能够达到学生积极主动为了实现应用而吃透理论,发挥主观能动性。采用项目训练为主的教学理念,切实提高学生的实际动手能力、创新能力和自学能力。

参考文献:

[1]耿素云,屈婉玲.离散数学[M].北京:高等教育出版社.

第2篇

1.1教学内容改革

1.1.1精选部分章节详细讲解我认为应该详细讲述数理逻辑、集合论、图论三大部分,数理逻辑部分主要讲述命题逻辑推理的形式规则,学好此章节有利于培养学生的推理能力,此部分内容广泛应用于人工智能之中,早期的智能系统主要应用的是数理逻辑中的推理规则,将自然语言进行符号化,而语言的符号化就是数理逻辑部分要研究的内容。集合论中有一部分关于集合方面的知识,学生在高中的时候已经接触过,所以不用对此部分进行深入教学,但是集合论中有一部分关于二元论的知识,二元论知识是数据库知识的基础,关系数据库的逻辑结构是由行和列构成的二维表,表之间的操作需要用到离散数学中的笛卡尔积的知识。图论是数据结构的基础,如数据结构中的线性表、栈、队列等都要用到图论的知识,数据结构中的一些算法也会用到此部分的知识,如求最小生成树,最短路程,二叉树的遍历等,同时图论也可以应用到计算机网络中,如求节点间最短路径。所以我认为应在众多的内容之中,重点掌握这三部分知识,让学生在短课时深入理解这三部分内容。其余部分的内容,如果学生在以后的学习与研究中需要利用到离散数学中的知识,就可以再对其他部分的内容进行深入学习与研究。

1.2.2增加实验教学内容目前大多数院校的离散数学教学都是采用纯理论上课的形式,很少有实验部分,从而导致学生认为此门课程无关紧要。为了改变学生的这种错误认识,我认为可以在离散数学的教学中增加实验内容。计算机专业的大一学生已经开始学习C语言课程,有了一定的编程基础,可以设计一些与离散数学有关的题让学生进行编程实现。命题逻辑部分涉及公式的判定类型,可以让学生编写程序实现公式的判定算法;图论中涉及最短路径,可以让学生编写求带权最短路径算法;二元关系中关系的性质具有自反、反自反、对称、反对称、传递五种关系,可以让学生尝试通过编程实现判定关系的算法。通过实验部分增强学生的动手能力,不但可以让学生对所学的内容理解得更好,而且可以让学生将理论与实践相结合学有所用,更与我们院校朝应用型转型相符合。

1.2教学方法改革

为了达到改变学生对待离散数学的错误态度,培养出具有创新能力的学生,我认为很有必要对教学方法进行改革,引导学生自主学习,培养学生的自学能力,达到最终的教学目的。

1.2.1趣味教学教师是教学的主导者,对教学起着重要作用。由于离散数学是一门偏数学的教学,难免会有些枯燥,学生的兴趣度不是很高,因此如果教师能在教学过程中做到幽默风趣,给学生在传授知识的同时,能够把有些同生活密切相关的知识讲得生动具体形象,从而提高学生的学习热情。数理逻辑部分中的命题逻辑部分的知识就有很多和生活密切相关,在讲课的时候,可以告诉学生,我们在生活中每天都会涉及推理,我们判定他人讲的话是真是假的过程,其实就是一个推理的过程。判定一个人是否成熟、讲话是否经过深思熟虑,也可以从他讲话的严谨程度进行判断,这还是一个推理的过程。同时可以告诉学生逻辑推理在我们的公务员考试行政职业能力与测验中经常要用到,如果有对考取公务员感兴趣的同学能深入学习和理解这部分内容,对逻辑推理部分有很大的帮助,从而提高学生对此门课程的关注度。教师在教学过程中应该展现自己的个人魅力,让学生喜爱教师的讲话风格、教态等,从而提高学生的学习兴趣。

1.2.2板书与多媒体相结合目前高校教学普遍采用多媒体进行教学,利用PPT教学可以节约板书时间,更高效地进行教学,但是离散数学与其他学科相比有自己的特点,定理多、概念多、推理多,如果完全采用多媒体教学,则学生难以跟上老师的思路。建议定理和推理采用板书形式,一步一步进行演算,帮助学生理解。一些概念和定义采用多媒体教学,节约板书时间。同时对于一些难以理解的内容如图论中求最短路径可以采用动画的形式进行演示,使其更形象、具体,提高学生的学习热情。

1.3教学手段改革

鉴于离散数学课程不易理解、比较难学的特点,因此我们有必要改革教学手段,使得离散数学的教学更具体形象,让学生更易理解所讲内容,提高学生的学习热情。当今是互联网时代,大家都可以利用网络获取信息资源。建设一个离散数学学习网站,可以帮助学生利用课余时间学习。此网站可上传教师的教学视频,学生可以在课余时间根据自己的学习情况进行有针对性的学习,同时教师也可以将课后习题上传到网站上供大家练习,管理员给每个学生分配一个账号,让学生进行登录观看教学视频、做习题、建立讨论区共同学习探讨,也可以在留言板上给教师留言,等待教师就相关问题作出回答。同时在网站上把离散数学中的一些比较经典的算法和方法,鼓励学生编程实现,学生可以上传其实现的算法,供大家共同学习和探讨,提高大家的动手能力,这也是和目前院校转型为应用型本科是相符合的。通过网络这样一个平台,在课余时间增加同学、师生之间的交流和互动,带动学生学习。

2结语

第3篇

那么,学生在证题时到底是由哪些原因造成思维受阻,产生解题的困惑呢?我们把它归纳为以下几点:

⑴不理解定理是进行推理的依据。其实如果我们把一道完整的几何证明题的过程进行分解,发现它的骨干是由一个一个定理组成的。而学生书写的不完整、不严密,就因为缺乏对定理必要的理解,不会用符号语言表达,从而不能严谨推理,造成几何定理无法具体运用到习题中去。

⑵找不到运用定理所需的条件,或者在几何图形中找不出定理所对应的基本图形。具体表现在不熟悉图形和定理之间的联系,思考时把定理和图形分割开来。对于定理或图形的变式不理解,图形稍作改变(或不是标准形),学生就难以思考。

⑶推理过程因果关系模糊不清。

针对以上的原因,我们在教学中采取了一些自救对策。

一、教学环节

对几何定理的教学,我们在集中讲授时分5个环节。第1、2环节是理解定理的基本要求;第3环节是基本推理模式,第4环节是定理在推理过程中的呈现方式,提出了“模式+定理”的书写方法;第5环节是定理在解题分析时的导向作用,提出了“图形+定理”的思考方法。程序图设计如下:

基本要求重新建立表象推理模式组合定理联想定理

二、操作分析和说明

⒈定理的基本要求

我们认为,能正确书写证明过程的前提是学会对几何定理的书写,因为几何定理的符号语言是证明过程中的基本单位。因而在教学中我们采取了“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求,并重新整理了初中阶段的定理(见附页,此只列出与本文有关的定理),集中展示给学生。

例如定理43:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。

一划:就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分。

如:“直角三角形”和“高线”、“相似”。

二画:就是依据定理的内容,能画出所对应的基本图形。

如:

三写:就是在分清题设和结论的基础上,能用符号语言表达,允许采用等同条件。

如:ABC是Rt,CDAB于D(条件也可写成:∠ACB=90°,∠CDB=90°等)ACD∽BCD∽ABC。

学生在书写时果然出现了一些问题:

①不理解每个定理的条件和结论。学生在书写时往往漏掉条件(如定理19漏掉垂直,定理46漏掉高、中线等);对条件太简单的不会写(如定理3);或者把条件当成结论(如定理12把三线都当成结论)。

②还表现在思维偏差。我们的要求是会用定理,而有些学生把定理重新证明一遍(如定理5、6);或者在一个定理中出现××,又××,××的错误。

③更多的是没有抓住本质。具体表现在把非本质的条件当成本质条件(如定理7出现∠1和∠2是同位角,AB∥CD);条件重复(如定理49,结论∠APO=∠BPO已经包括过圆心O,学生在条件中还加以说明);图形过于特殊(如把定理1的图画成射影定理的基本图形);文字过多(一些定理译不出符号语言,用文字代替)等。

⒉重新建立表象

从具体到抽象,由感性到理性已成为广大数学教师传授知识的重要原则。“表象”就是人们对过去感知过的客观世界中的对象或对象在头脑中留下来的可以再现出来的形象,具有一定的鲜明性、具体性、概括性和抽象性。由于几何的每一个定理都对应着一个图形,这给我们在教学中提供了一定的便利。我们要求学生对定理的表象不能只停留在实体的形象上,而是让学生有意识的记图形,想图形,以形成和唤起表象。我们认为,这对于理解、巩固和记忆几何定理起着重大的作用。

教给学生想形象的基本方法后,我们接下去的步骤是用实例引导学生,下面是一段经整理后的课堂教学主要内容:

⑴问:听了老师的介绍后,你怎样回忆垂径定理的形象?

答:垂径定理我在想的时候,脑子里留下“两条等弧、两条相等的线段、一个直角”在一闪一闪的,以后看到弧相等或其他两个条件之一,脑子里就会浮现出垂径定理。

目的:建立单个定理的表象,要求能想到非标准图形。

继续问:看到弧相等,你们只想到了垂径定理,其他的定理就没有想起来吗?

答:想到了圆心角相等、圆周角相等、弦相等……

甚至有学生想到了两条平行弦……

目的:通过表象,进行联想,使学生理解定理间的联系。

⑵问:从定理21开始,你能找出和它有联系的定理吗?

答:有定理22(擦短使平行直线变成线段),定理25(特殊化成菱形),定理27……

目的:一般化或特殊化或图形的平移、旋转等变化,加深定理间的联系。

⑶下面的步骤,我们让学生自主思考。学生在不断尝试的过程中,通过比较、分析、判断,进一步熟悉定理的三种语言、定理之间的联系和区别。从学生思考的角度看,他们主要是在寻找基本图形,由于定理之间有一定的联系,在一个基本图形中往往存在着另一个残缺的基本图形,所以学生大多通过连线、延长、作圆、平移、旋转等手段,也有通过特殊化、找同结论等途径把不同的定理联系起来。

下面摘录的是学生自主思考后,得到的富有创意性的结论。

①定理16(延长中线成矩形)定理24(作矩形的外接圆)定理34。

②定理51(一线过圆心,且两线垂直)定理36(一线平移成切线)定理47、48(绕切点旋转)定理50。

③如下图,把EF向下平移(或绕A点旋转),使定理37和50联系起来(有同结论∠α=∠D):

⒊推理模式

从学生各方面的反馈情况看,多数学生觉得几何抽象还在于几何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤。怎样将形式多样的推理过程让学生看得清而又摸得着呢?为此,我们在二步推理的基础上,经过归纳整理,总结了三种基本推理模式。

具体教学分三个步骤实施:

⑴精心设计三个简单的例题,让学生归纳出三种基本推理模式。

①条件结论新结论(结论推新结论式)

②新结论(多个结论推新结论式)

③新结论(结论和条件推新结论式)

⑵通过已详细书写证明过程的题目让学生识别不同的推理模式。

⑶通过具体习题,学生有意识、有预见性地练习书写。

这一环节我们的目的是让学生先理解证明题的大致框架,在具体书写时有一定的模式,有效地克服了学生书写的盲目性。

但教学表明学生仍然出现不必要的跳步,这是什么原因呢?我们把它归结为对推理的因果关系不明确、定理是推理的依据和单位不明白。因而我们根据需要,又设计了以下一个环节。

⒋组合定理

基本推理模式中的骨干部分还是定理的符号语言。因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。

下面通过一例来说明这一步骤的实施。

例1:已知如图,四边形ABCD外接O的半径为5,对角线AC与BD相交于E,且AB=AE·AC,BD=8。求BAD的面积。(2001年嘉兴市质量评估卷六)

证明:连结OB,连结OA交BD于F。

学生从每一个推测符号中找出所对应的定理和隐含的主要定理:

比例基本性质S/AS/证相似相似三角形性质垂径定理勾股定理三角形面积公式

由于学生自己主动找定理,因而印象深刻。在证明过程中确实是由一个一个定理连结起来的,也让学生体会到把定理(不排除概念、公式等)镶嵌在基本模式中,就能形成严密的推理过程。此时,可顺势布置以下的任务:给出勾股定理,你能再结合一个或多个定理,构造图形,并编出证明题或计算题吗?

实践表明:经过“模式+定理”书写方法的熏陶后,学生基本具备了完整书写的意识。

⒌联想定理

分析图形是证明的基础,几何问题给出的图形有时是某些基本图形的残缺形式,通过作辅助线构造出定理的基本图形,为运用定理解决问题创造条件。图形固然可以引发联想(这也是教师分析几何证明题、学生证题的基本方法之一),但对于识图或想象力较差的学生来说,就比较困难,他们往往存有疑问:到底怎样才能分解出基本图形呢?在复杂的图形中怎样找到所需要的基本图形呢?因而我们从另一侧面,即证明题的“已知、求证”上给学生以支招,即由命题的题设、结论联想某些定理,以配合图形想象。

例:如图,O1和O2相交于B、C两点,AB是O1的直径,AB、AC的延长线分别交O2于D、E,过B作O1的切线交AE于F。求证:BF∥DE。

讨论此题时,启发学生由题设中的“AB是O的直径”联想定理“直径所对的圆周角是90°”,因而连结BC;“过B作O的切线交AE于F”联想定理“切线的性质”,得出∠ABF=90°。从而构造出基本图形②③。

由命题的结论“BF∥DE”联想起“同位角相等,两直线平行”定理,构造出基本图形④。将上述基本图形②③④的性质结合在一起,学生就易于思考了。

这一环节我们的引导语有:“由已知中的哪一个条件,你能联想起什么定理?”、“条件组合后能构成哪个定理?”、“有无对应的基本图形?”、“能否构造出基本图形?”等。目的是让学生树立起“图形+定理”的思考方法,把以前的无意识思考变成有目的、有意识的思考。

三、几点认识

复习的效果最终要体现在学生身上,只有通过学生的自身实践和领悟才是最佳复习途径,因此在复习时,我们始终坚持主体性原则。在组织复习的各个环节中,充分调动学生学习的主动性和积极性:提出问题让学生想,设计问题让学生做,方法和规律让学生体会,创造性的解答共同完善。

“没有反思,学生的理解就不可能从一个水平升华到更高的水平”(弗赖登塔尔)。我们认为传授方法或解答后让学生进行反思、领悟是很好的方法,所以我们在教学时总留出足够的时间来让学生进行反思,使学生尽快形成一种解题思路、书写方法。

集中讲授能使学生对几何定理的应用有一定的认识,但如果不加以巩固,也会造成遗忘。因而我们也坚持了渗透性原则,在平时的解题分析中时常有意识地引导、反复渗透。

参考资料:

精品推荐