美章网 精品范文 历史发展论文范文

历史发展论文范文

前言:我们精心挑选了数篇优质历史发展论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

历史发展论文

第1篇

论文摘要:回顾了全息术的历史,阐述了全息术的基本原理,然后介绍了全息术在实际中的应用及其发展方向。

我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅(强弱),位相(同相面形状)和波长(颜色)。如果能得到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已被广泛地应用于近代科学研究和工业生产中。

1全息术的历史和发展阶段

1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验证实这一想法,即全息术,并制成世界上第一张全息图。盖伯本来是为提高电子显微镜的分辨率而提出的设想,虽然未能用电子波证实其原理,但用可见光证实了。从第一张全息照片制成到20世纪50年代末期,全息图制作具有以下共同特点:全息图都是用汞灯作为光源;而且是所谓同轴全息图,即物光和参考光在一条光路上得到的全息图。这一时期的全息图被称为第一代全息图,标志着全息术的萌芽。第一代全息图存在两个严重问题,一个是再现的原始像和共轭像分不开,另一个是光源的相干性太差。因此在这十多年中,全息术进展缓慢。

1960年激光的出现,提供了一种高相干度光源,为全息技术发展提供了可能。针对第一代全息技术出现的问题,利思和乌帕特尼克斯(1962)提出,将通信理论中的载频概念推广到空域中,用离轴的参考光与物光干涉形成全息图,再利用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光。该方法被称为离轴全息术,这是全息术发展的第二阶段。第二代全息术解决了光源的问题,并且在立体成像、干涉计量检测、信息存贮等应用领域中获得巨大进展,但是激光再现的全息图失去了色调信息。

科学家们开始致力于研究第三代全息图到。这是用激光记录,而用白光再现的全息图,在一定的条件下赋予全息图以鲜艳的色彩。第三代全息术已经在很多领域的到了应用,例如:像全息、反射全息、彩虹全息、模压全息等。

激光的高度相干性,要求全息拍摄过程中各个元件、光源和记录介质的相对位置严格保持不变,这也给全息技术的实际使用带来了种种不便。于是,科学家们又回过头来继续探讨白光记录的可能性。第四代全息图应该是白光记录白光再现的全息图,它将使全息术最终走出有防震工作台的黑暗实验室,进入更加广泛的实用领域。

2全息术的基本原理和特点

全息术是一种“无透镜”的两步成像法,它能在感光胶片上同时记录物体的全部信息,即物体光的振幅和位相。全息照相过程分全息记录和再现两步:第一步称为波前记录(全息记录);第二步物体的再现(重现)。

波前记录依据的是干涉原理,物光波和参考光波相干叠加而产生干涉条纹。干涉条纹的反衬度记录了物光波前的振幅分布,干涉条纹的几何特征(包括形状、间距、位置)记录了物光波前的位相分布。就是说,全息图上的强度分布记录了物光波的全部信息-振幅分布和位相分布,它们分别反映了物体的明暗和纵深位置等方面的特征。应当指出,任何感光底片都只能记录振幅(或者说强度)的分布,而不能直接记录位相分布,全息照相之所以能记录位相分布,是利用了参考光波把它转化成了干涉条纹的强度分布。假如没有参考光波,或者它与物光波不相干,波前上的位相分布是不可能记录下来的。

波前再现的理论依据是衍射原理,照明光波(再现光)经过全息图衍射后出现一个复杂的光波场。全息图的衍射波含有三种主要成分,即物光波(+1级衍射波),物光波的共轭波(-1级衍射波),照明光波的照直前进(零级衍射波)。在现代记录和重现的全息照相装置中,这三种衍射波在空间彼此分离,互不干扰,便于人们用眼睛或镜头去观测物光波的虚像或其共轭波的实像。

全息术的原理决定了它所记录的全息图有下列特点:

(1)三维性——因为全息图记录了物光的相位信息,图像具有显著的视差特性,可以看到逼真的三维图像。

(2)不可撕毁性——因为全息图记录的是物光与参考光的干涉条纹,所以具有可分割性。它被分割后的任一碎片都能再现完整的被摄物形象,只是分辨率受到一些影响。

(3)信息容量大——同一张全息感光板可多次重复曝光记录,并能互不干扰地再现各个不同的图像。

(4)全息图的再现相可放大或缩小——因为衍射角与波长有关,用不同波长的激光照射全息图,再现相就会发生放大或缩小。

3全息术的主要应用及其发展方向

全息术经过60年的发展,已与计算机技术、光电技术以及非线性光学技术紧密结合,成为一种高新技术,扩展到医学、艺术、装饰、包装、印刷等领域,在一些发达国家还兴起了全息产业,并且正在形成日益广阔的市场,实用前景非常可观。本文介绍全息术中几个应用较为广泛、产业化较成熟的领域并说明其发展方向。

3.1全息存储

全息存储是依据全息术的原理,将信息以全息照相的方式存储起来,它利用两个光波之间的耦合和解耦合,可以把信息存储和信息之间的比较(相关)、识别,甚至联想的功能结合起来,也就是可以把信息存储和信息处理结合起来。用于全息信息存储的记录介质较多,可永久保存信息的全息图用银盐干板、银盐非漂白型位相全息干板、光聚合物及光致抗蚀剂等;可擦除重复使用的实时记录材料有光导热塑料、有机或无机光折变材料等。全息存储在存储容量方面具有巨大的优势,原因是:

(1)全息存储具有存储容量大的优势。用感光干板作为普通照相记录信息时,信息存储密度的数量级一般为105bit/mm2;用平面全息图存储信息时,存储密度一般可提高一个数量级达106bit/mm2;如果用体全息图存储信息时,存储密度可高达1013bit/mm2。

(2)全息存储具有极大的冗余性,存储介质的局部缺陷和损伤不会引起信息丢失。

(3)全息存储具有读取速率高和能并行读取的特点,每个数据页可包含达1Mbit的信息,写人一页的时间在100ms左右,读信息的时间可以小于100μs,而磁盘的寻址时间至少需要10ms。

当前,在世界范围内掀起了全息存储研究的热潮,并取得很大的进展,其主要表现在:

(1)存储容量迅速提高和性能不断改善,并逐步走向实用化。例如,1994年美国加州理工学院在1cm3掺铁妮酸锉晶体中记录了1000幅全息图,同年,斯坦福大学的一个研究小组把经压缩的数字化图像视频数据存储在一个全息存储器中,并再现了这些数据而图像质量无显著下降。1999年美国加州理工大学利用空-角复用技术,在同一块在掺铁铌酸锂晶体中存储了26000幅全息图。北京清华大学实现了在掺铁妮酸铿晶体中的同一空间位置记录1500幅全息图,并研制了具有紧凑结构的灵巧型全息存储装置。

(2)实用化的全息存储系统逐渐推出。例如,1995年由美国政府高级研究项目局(ARPA)、IBM公司的Almaden研究中心、斯坦福大学等联合成立了协作组织并在美国国家存储工业联合会(NS1C)支持下川,投资约7000万美元,实施了光折变信息存储材料(PRISM)和全息数据存储系统(HDSS)项目,预期在5年内开发出具有容量为1Tbit数据,存储速率为1000MB/s的一次写人或重复写人的全息数据存储系统。同样的研究在法国、英国、德国和日本等国家也正在加紧进行。

近几年来,光电子技术和器件取得了系列重大进展,为全息存储器提供了所必要的高性能半导体激光器、液晶空间光调制器、CCD阵列探测器等核心元器件,全息存储的理论和方法的发展使这项技术日趋成熟然而,美中不足的是全息图的寿命问题尚待解决,虽然张泽明、谢敬辉等对Ce:Fe:LiNbO3晶体的全息存储和热定影进行了理论和实验研究,从方法上给出了记录角度越大,光栅周期越小,热定影所需最小离子数密度越高,存储系统的整体性能越好,但是目前还未解决的一个难题是寻找合适的记录材料。无疑,这将成为全息存储界研究的热门课题。

3.2显示全息

显示全息技术是在激光透射全息图的基础上来制作各种类型的全息图,如白光反射全息图、白光透射全息图等,各种类型的显示全息图可用于舞台布景、建筑、室内装饰、投影等;再如,以动态显示的全息技术、层面X射线照相术、3DCAD技术、3D动画片、雷达显示、导向和模拟系统等,每3年一次的显示全息国际会议上都有全息界泰斗展出令人吃惊的全息图,它们充分展示了全息技术创造性的魅力和艺术的美。

显示全息目前主要有两大类:第一类是Lippmann全息图,制作方法有Denisyuk的单光束法和Benton的开窗法。第二类是S.A.Benton的彩虹全息图,这是一种透射式显示全息图,可在白光照明下再现立体图像,且图像的颜色随观察的位置的变化而变化,从红到紫如雨后彩虹而得名。随着高质量记录材料的发展,随后的一些研究者和艺术家不断追求更实用的拍摄技术,如假彩色编码和真彩色反射全息图等。美国光学学会主办的《AppliedOptics》和《OpticsLetters》在20世纪80年代都有关于这方面的论文报道。由SPIE主办的《Holosphere》和美国全息制造商协会主办的《HolographyNews》以往和近年都不断地报道有关显示全息图的最新制作技术和商业信息。但从这些报道情况来看,显示全息存在不足主要表现在:

(1)视角范围、图像体积有限;

(2)没有获得特别有效的全息图的计算方法;

(3)由于全息计算数量巨大,导致动态显示异常困难。克服以上不足,将可能成为显示全息研究的几个热点。

近年来,显示全息技术掀起一场数字化变革,数字合成全息技术为全息三维显示开辟了前所未有的应用前景。随着计算机运行速度的提高和高分辨空间调制器件的发展,利用显示全息的大视场、大景深、全视差、真彩色、可拼装、价格低廉等特性,在不久的将来开发出真正意义的全息电影和全息电视,为显示全息技术创造良好的商业前景。

3.3模压全息

模压全息是1979年RCA公司为解决视频标准件的全息拷贝而提出的,它是将全息术和电镀、压印技术结合起来,使全息图的制作产业化,用白光再现时,可得到色彩鲜艳逼真的三维图像,并可通过印刷方式大批量生产,使得它在许多领域得到广泛的应用,以商品形式走向市场。模压全息的制作主要分为三个阶段:激光摄制原片全息图;电成型制金属模板;模压复制。这三个阶段生产工艺和技术要求都比较高,因此,模压全息作为安全防伪首当其冲,是安全防伪技术的一个里程碑。正如全息图的新奇性、强烈的视角效果、制作的难度以及易于应用在钞票的包装上,不能去除性、价格低廉、容易验证等特点,使它很快占领了防伪领域。模压全息是一种技术与艺术结合的高科技产品,无论在高档商品促销、名优商品的防假冒或在有价证券(如信用卡、钞票、护照签证)的防伪和加密以及图书、印刷、印染、装磺、纪念邮票和广告标牌等都有采用模压全息技术,并备受使用者青睐。

模压全息出现于20世纪70年代,80年代中期已形成了一种产业,90年代达到了鼎盛时期。本世纪初,随着防伪技术要求的不断提高,模压全息技术又有了新的突破:美国斑马图像公司推出了二维图像的数字化采集和拍摄技术;2003年,苏州大学研制成功并已批量生产“数码激光全息照排系统”;同年,倪星元、张志华等成功研制了可替代传统镀铝防伪薄膜的透明TiO2激光全息防伪薄膜。这些模压全息的一个个技术突破,使防伪功能有了提高,让激光全息防伪技术达到新的境界。

模压全息产业在我国起步较晚,但发展速度迅猛,目前国内已有100多条模压全息生产线。为了使模压全息技术健康发展,我国模压全息产业发展必须在三个方向上引起重视:首先是开拓全息烫金材料,取代金膜和银膜,其次开发全息包装材料,实现立体防伪包装,第三个方向是模压全息技术和现代印刷术相结合,体现传统的美术效果和现代科技的艺术魅力。

3.4全息干涉计量

全息干涉计量术是将不同物光,在不同的时间记录在同一张全息干板上,然后利用全息术的空间波前再现原理,非接触地对物体表面进行三维测量而获得信息。全息干涉计量术是全息应用的一个重要方面,它能实现高精度非接触性无损测量,比一般光学干涉计量有很多优点。一般光学计量只能测量形状比较简单、表面光度很高的零部件,而全息计量方法则能对任意形状、任意粗糙表面的物体进行测量,测量精度为光波波长λ的数量级。目前,全息干涉计量术在方法上先后发展了实时全息干涉法(单次曝光法)、二次曝光全息干涉法、时间平均全息干涉法、双波长干涉法以及双脉冲频闪全息干涉法,此外,J.A.Leendertz开辟了全息干涉计量术的另一个新的分支-激光斑纹计量术。随着光电技术、计算机技术、CCD器件及光纤技术的飞速发展,使得全息干涉计量技术在信息采集和处理上更为方便、快捷和可靠,并得以在恶劣环境条件下对某些物理量进行定时测量。再加之相移技术、外差技术和锁相技术等,可使测量精度提高到λ/100或更高。

全息干涉计量在20世纪80年代美国等西方先进国家已产业化,我国在20世纪80年代初有几所大学和科研单位的研究项目通过鉴定,其中有些达到当时的先进水平。经过近几年的开发和研制,我国在全息干涉计量测试设备方面主要发展有:

(1)用于测试火箭发动机喷雾化特性的YSCI型离子瞬态激光全息测试仪;

(2)用于激光热核聚变稠密等离子体电子密度测量的SPQ-1型四分幅皮秒紫外线激光全息探测仪;

(3)包括记录、再现、图像处理三部分的瞬态激光全息干涉计量测试系统;

第2篇

论文摘要:本文从我国档案事业起源、产生到不断进步,从档案材料种类,行政组织机构建设,管理制度完善,管理人员调迁,档案库建设,档案利用编史修志成果等方面,回顾了我国自商代至明清主要朝代档案事业发展的足迹。

随着人类远古历史流传,人类历经如燧人氏钻木取火,伏羲氏结网捕鱼,神农氏种植五谷等传说;历经结绳记事、刻契记事、图画记事等的原始记事;历经语言记录符号——文字的产生;历经国家、阶级、文明的产生;档案最终成为人类语言及活动的记录。

据《说文》中记载,“史,记事者也,从右持中,中,正也”。所谓“中”意为“薄书”“凡官府薄书谓之中,薄书犹今之案卷也”。商代的“史官”是商文化、文字、书册的统领者,是王命大政的决策、记载、下达及掌管者。即“史官”是当时神权的代言人和文化的垄断者,同时他们又是商代档案的形成者与管理者。其中闻名于世的商代甲骨档案,包括:占卜刻辞、卜事刻辞、记事刻辞、表谱刻辞等四类,是我国现存最早、较系统的官府文书,是揭示商代历史最丰富最直接可靠的原始材料,也是世界上绝无仅有的材料独特、数量繁多、年代久远的档案,同时亦是中国古老文明的鲜明佐证。

到了西周时期,我国档案工作比商朝有了进一步发展。“太史寮”以大史为首,及其下属官员组成的官署机构,主要掌管起草文书、记载史事、保管国家典籍、策命诸侯卿大夫及其他事务。当时除了有专门的档案机构,还有了比较细化的掌管王朝内外档案的组织人员,即大史、小史、内史、御史和外史。此外西周的史官记注制度是我国古代历史记载方面领先于世界的一种管理制度。而“金文档案”又是我国历史上继商代甲骨档案之后又一种特有的弥足珍贵的历史档案。

历史演进到春秋战国时期,代表当时阶级势力的文书档案无论从内容到形式都有了较大发展。其中包括专门档案、日常政务文书及民用契券,主要种类有刑书、计书、上书、盟书、玺书、遗书、符、节、檄文、券等。另外,文书档案工作逐渐由传统史官任内分离出来,被一批专门掌管文书档案的官员所代替。这表明了社会的发展与进步,由奴隶社会向封建社会转化,同时也是职官分工的历史进步。

秦朝,在其他诸侯列国的先进文化影响下,其文书档案管理工作得以迅速发展完善。至秦文公以后达到历史较高水平。而且秦的文书档案制度的制定是在全国统一文字的基础上得以实施。并且其文书档案工作紧密围绕巩固发展专制的封建皇权,从而大大促进了古代文书档案工作的进程。

两汉时期的档案和档案工作,随着中国封建社会的发展得到进步。这一时期的公务文书的种类和用途增加许多,在文书处理方面,逐步形成了从中央到地方一整套文书工作制度,保证了文书档案的顺利传递,有利维护了封建国家机器的正常运转。两汉时期,当时政权重视加强档案文化典籍的收集、累积和利用,促进了这一时期文化的高度发展和繁荣。

魏晋南北朝时期,中国又进入动荡战乱时代。在中央,档案工作形成中书、门下、尚书三省分治的中枢系统,建立了中央文书档案的工作系统。同时随着各国文书档案工作系统的建立和加强,各国文书档案工作人员日益增加,先后设置有尚书、都令史、令史、书令史……官吏多达五六十种,名目之多创历史之最。但这一时期各国皆重视档案典籍的收藏与营养汲取。然而由于长期的社会动乱,大量的档案典籍又造成很大破坏。令人欣慰的是,这一时期随着我国四大发明之一造纸技术的发展,以及笔、墨等书写材料的改进,不仅促进了我国书法和文具制造工艺的提升,而且为文书档案工作的发展提供了良好的物质技术条件,因而档案工作得到了进一步提高和发展。

随着历史的发展,我国社会进入空前繁荣的唐代。唐代的档案工作中,确立了文书档案“中书出令、门下审议、尚书执行”的三省分权运行体制。三省分权制度,保证了文书运行的认真准确、避免了任何一方的独权,有效维护了国家机器的正常运转。至隋唐,文档官吏进一步专职化,由于当时科举制度的诞生,选官用吏两相分离,最终形成等级森严的官吏制度。而作为文书档案人员的“令吏”,地位低微而又不易升迁。随着国家机构的不断完善,文书档案的管理制度和律令亦比前代更加系统完备。对档案的收集归档,整理鉴定,销毁利用等方面都做了明文规定。贞观三年(公元629年),唐太宗组史馆,设馆官修史书,他深明“以史为鉴”;“以古为镜,可以知兴替”的道理,因而通过修史编制来加强巩固政治统治。并且这种设置史馆的官修史书制度,一直延伸到清朝民国。唐代征集档案史书编纂的成就主要体现在,二十四史中的《晋书》、《梁书》、《陈书》、《北齐书》、《周书》、《隋书》、《南史》及《北史》,皆成书于唐的史馆。宋代的文书档案种类,除一般政务文书外,其专门档案有“赋役档案”、“律法档案”和“例”。宋朝档案目前基本无存。由于宋代政治腐化,封建官僚日益腐朽堕落,一切政事“以例从事”,“例”即所谓档案,因而掌管档案的官吏无疑成为处理政事中不可或缺的人员。因此宋代文书档案人员,尽管职位不高,但在各级政权机关中的作用却比唐朝重要。宋代的档案工作机构中,有“事中”,“中书舍人”,“翰林学士”“司谏”,“录事”,“主事”,“令史”,“书令史”等档案官员。宋代的文书工作制度日益完善,以法律的形式加以约束,文书和档案工作也有了初步分工,两方面的工作都有了较大发展。另外宋朝建立了专门用于保管皇帝的诏令、谱系、典籍、诗文等档案的帝王档案库。两宋时期共建了十一座皇帝档案典籍库,分别收藏各朝皇帝的档案。这也是档案机构发展的一个标志,一个转折点。宋朝代表档案保管工作发展水平的另一个重要标志,是架阁库的普遍设置。架阁库不仅是档案保管装具的变革,也是宋代各级政权机关保存文书档案的专职机构,同时也创立了一整套档案管理制度。它开创了广泛意义上普遍保存文书档案的途径,是中国档案史上的重大变革,也是现代机关档案室的基本雏形。这一时期编史修志的重要成就,是历史上著名的司马光编纂的《资治通鉴》和郑樵编著的《通志》。

明代的文书工作制度日趋健全。档案工作机构的设置也由分散趋于统一进一步发展。明朝建立的属中国档案史上规模空前的专门档案库--后湖黄册库,用于保管全国赋役档案。它具有专门工作人员、独立管理经费和严格的管理制度。档案保管数量繁多,库房存储面积巨大,为十六世纪早期世界所罕见。另一皇家档案库的代表--皇史,全部为砖石结构,坚固耐用,恒温恒湿,有利于档案的永久保护。是当时我国劳动人民高超建筑水平和智慧的结晶。

清朝的档案,绝大部分为政府官文,数量愈加浩繁,名称种类复杂。其档案管理制度有了进一步发展和健全,建立了包括“一案一卷”的立卷制度;按文种、问题分类的整理制度;编目登记制度;档案汇抄制度;档案清理修缮制度等,至此档案工作的整个过程得到完善和提高。

处于半封建半殖民地的近代中国,国败民衰,伤痕累累,历史档案文物失窃频频。从殷商甲骨、两汉竹简到唐代佛像经卷;从敦煌莫高窟到圆明园;从斯坦因到八国联军;从到帝国列强发动的历次……然而政治的动乱,列强的蹂躏,终究不能阻断中华民族文化事业的进程与发展,一些文化教育团体的涌现崛起,故宫历史博物馆文献馆,中央研究院历史语言研究所,社会科学院研究所,清华大学历史系,北京大学“明清史料整理会”等,他们凭着对历史、对民族、对子孙高度负责的精神,对明清历史档案进行了含辛茹苦的收集、整理、鉴定、研究,不仅有效保护了国家历史文化精髓,同时有利促进了中国档案学的进一步发展与提高。

回顾国家档案事业史发展历程,从原始记事到档案起源,从国家、阶级、社会的产生,到档案的形成、发展,它伴随着人类历史的发展而发展,随着人类文化的进步而进步。在当今全球高度信息化背景下,我们将推进国家档案事业信息化建设和现代化管理进程的步伐,不断促进我国档案事业全面协调可持续发展。

参考文献

第3篇

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论