前言:我们精心挑选了数篇优质大数据营销论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
流量业务是电信运营商收入增长最大的驱动力,但当前的困境在于,流量收入增长无法补偿流量成本,形成所谓的剪刀差;更长远来看,随着流量渗透率的提升,流量收入增长将不可避免地放缓,在价格竞争作用下,流量收入出现下降也是可能的。与此同时,关于大数据的讨论在技术、应用和模式等多个层面展开,已被认为代表着时展的方向。OTT们正在积极主动地利用这一趋势改变自身经营模式、指导业务布局和演进方向。反之,尽管坐拥丰厚的大数据资产,电信运营商对于大数据的战略价值一直处于朴素而将信将疑的状态,缺乏对大数据经营模式的基本理解和全盘考虑。如果能够揭示大数据经营和流量经营之间的内在联系,对求解流量经营困境和认识大数据经营模式都大有裨益。
(二)当前流量经营的价值困境
流量是当今数字世界运转的基础。“客观属性”是对“流量”这一认识客体固有属性的客观描述,不因经营主体和经营方式而异。流量属性包括以下方面:1)流量的规模性,指流量可用同一量纲进行规模比较,比如联通单用户流量规模要高于移动,百度流量规模要高于google中国,基于中国移动网络发生的流量规模要高于基于百度服务发生的流量规模;2)流量的层次性,指流量与用户真实行为(主体)的接近程度。流量蕴含着反映主体行为的信息,但程度有所不同。比如淘宝网所承载的流量直接反应用户的网购行为,而电信网所承载的流量只是经过IP协议封装的比特流,前者显然更接近用户真实行为因而被称为表层流量,后者则被称为底层流量;3)流量的异质性,指流量对用户消费目的(客体)的涵盖范围。流量蕴含着反映客观世界的信息,但范围有所不同。比如文本、话音、图片、音乐、视频等不同类型之间,垂直应用与平台式应用等不同类型之间,社交类、娱乐类与生产类应用等不同业务类型之间,其流量映射客观世界的能力就各有差异和侧重;4)流量的不可分性,虽然底层流量和表层流量在概念上区分了,但在实体上是紧密依赖的,是同一事物在不同经营层面上的不同投影。比如,淘宝的表层流量离不开运营商底层流量的依托,运营商底层流量也离不开淘宝等表层流量的呈现,同时,淘宝可推知用户使用了多少底层流量,运营商也可部分解析出用户的购物行为。
可见,流量是一个充满想象空间的市场,而电信运营商似乎占据有利地位。综合流量的层次性和异质性,流量被赋予了主体行为和客体存在在信息层面上统一投影的属性,是信息社会不断流动的血液,具备极大的社会价值和经济价值。从流量的不可分割性来看,上层服务提供商与基础运营商之间的相互依赖、相互制约将是长期的基本格局。从流量的规模性来看,至少在本地市场,由于基础设施市场集中度高,电信运营商很容易就可获得超过任何单一玩家(如apple和facebook)的规模优势。
但现实情况中,流量规模的暴涨对电信运营商是一把双刃剑,情况不容乐观。流量在呈现客观属性的同时,在特定的经营主体及经营方式下,还会表现出影响甚至决定经营绩效的经营特征。本文认为,固然客观属性有利于电信运营商开展新一轮价值创造,但在当前经营模式下,流量应有的价值并未得到充分挖掘,无法支撑电信运营商的可持续发展。
当前的流量经营模式是,通过提供同质化的、以M为价值衡量单位的流量产品来满足用户的接入需求,然后通过向用户收取按照使用量计算的费用来补偿网络成本、运维成本和营销成本。在这种模式体现出三大属性:一是面向手段性需求。用户向运营商购买流量不是为了流量本身,而是为了流量所承载的个性化互联网应用。流量仅仅是服务于互联网消费的手段,因此,与面向目的性需求的互联网服务提供商争夺用户界面时,电信运营商天然地处于劣势;二是无直接网络效应,电信运营商无法将网络效应内化从而无法实现业务的边际效应递增。流量用户之间并未像话音用户之间和短信用户之间那样构成彼此连接的网络,用户之间的网络是通过业务构成的,而业务网却控制在OTT手中。换言之,网络效应主要存在于OTT业务层,而非管道层。因此,随着使用OTT业务的用户越来越多,以及用户使用OTT的业务次数越来越多,OTT业务的边际效用递增,但电信运营商流量的边际效用基本持平;三是边际成本下降有限,面对指数级增长的流量需求,运营商不断追加投资扩容、升级只能勉强跟上。上期投资刚进入边际成本下降阶段新的投资又追加进来,下降趋势被中止。在投资压力下,设备商又勾画了美妙的技术前景,许诺平均成本将极大地降低,勾引运营商全面投资新技术。这样多次循环和叠加,在相当长一段时间内,运营商都处于初始成本投资阶段,流量边际成本下降的周期被压缩到很短。反观OTT,一旦业务上线,在运营成本增长与业务量增长相比可忽略不计的前提下,业务边际成本很快就会下降到接近于0。某种程度上,信息产品边际成本为0规则的成立,是建立在电信运营商的牺牲之上的。
图OTT业务与电信运营商流量业务的边际效用/成本对比
电信业本是新经济的鼻祖,网络效应理论就是70年代从对话音网络的研究中发展起来的。然而,在当前经营模式下,运营商的流量业务失去了网络效应、边际成本趋于0、边际效用递增等信息产品的新经济特征,用工业经济时代的经营模式去与新经济时代的经营模式争夺价值,注定是落于新型竞争对手的。这是仅在流量规模上做文章,没有深入挖掘流量价值形成的后果,运营商由此陷入流量价值困境。
(三)大数据经营破解价值困境
大数据的定义众说纷纭,从技术特征上它通常具备数据量大(volume)、数据类型多(variety)和数据处理和响应速度快(velocity)的特征,麦肯锡将大数据定义为超过了常规数据库软件所能搜集/存储/管理和分析的规模的数据集。大数据概念具有深刻的IT烙印,正如“流量”概念具有深刻的电信烙印。通信与计算是信息的不同处理环节,在ICT端到端融合的背景下,流量和大数据完全可以统一在“信息”概念下,是信息全生命周期不同阶段的称谓。流量有表层底层之分,数据也有信息、知识、智慧之谓,流量经营和大数据经营均可理解为信息经营。
然而,仅仅揭示大数据本身的属性是远远不够的,如果脱离了正确的经营模式,一切价值都是虚妄。在这方面,电子科技大学周涛教授的观点很有价值。他认为,大数据1.0是利用内部数据解决内部问题,大数据2.0是利用内部数据去解决外部问题,或利用外部数据解决内部问题,大数据3.0意味着大数据进入了一个以共享交易为特征的时代,出现了大数据公共平台运营商(以下简称大数据运营商)。从1.0到3.0,大数据的工具属性逐步减弱,目的属性逐步增强,直至“大数据”像货币一样在全社会范围被收集、交换、处理、传输和应用,使得大数据可以真正成为时代的标签。在这个意义上,大数据之“大”,就是不断增强数据的透明性、不断扩大数据的共享范围、不断提升数据的流动性,在更大范围内解决信息不对称以创造更大的价值。否则,无论数据多丰富,技术多先进,都较过去无本质突破,大数据之“大”盛名难副。这个过程,是大数据经营环境不断完善和经营模式不断演进的过程。
大数据经营模式严格来说是指大数据运营商的经营模式。大数据运营商采取双边平台模式,一方面向消费者提供普遍服务,另一方面向企业客户提供以大数据为中心的服务。可以形象地将这种经营模式比喻为“数据银行”。1)大数据运营商自身掌握独特而雄厚的数据资产,这往往是一个通过提供消费者服务集腋成裘的过程,正如银行通过吸纳个人存款掌握雄厚的现金等资产;2)这些数据的使用权和支配权归大数据运营商但所有权属于消费者,正如银行可以自行决定吸纳的存款如何使用,但储户拥有随时要求提现的权力;3)大数据运营商以免费或部分免费提供服务为代价,换取消费者在使用该服务时产生大数据的支配权,正如银行承诺利息收益换取现金存入或委托理财,并默认获得资金支配权;4)这些大数据被用到千百万家企业的生产服务流程中,为大数据运营商的企业客户创造价值,为大数据运营商赚取收益,正如银行吸纳的存款被贷给各行各业的企业,融入经济生活的角角落落。为了进一步理解该模式,下面描述一些细节:
细节一:场景举例。风险控制是保险公司商业模式的核心环节,如果能够更准确地获知投保客户的风险系数,保险公司就可能设计更有竞争力的保险险种和更丰厚的收益。比如车险,如果能对某潜在客户的出行和驾驶行为数据如车速、车程、违规记录等进行分析,保险公司就能更精确地推知该用户在投保期内出现安全事故的概率,从而制定更为有利的保费和理赔政策,比如避免对高危客户(通过各种指标定义)保费过低或保额过高,而对“安全系数”较高的客户则可以在常规保费基础上打折以提升产品的吸引力。同样,对于疾病险,如果能够对潜在客户每天身体健康指标如血压、心跳、卡路里消耗、睡眠时间等,保险公司就能识别优质客户并针对性地设计相关疾病险种。在这个简单的例子里,大数据产生于用户使用的车联网、移动健康等服务,大数据运营商需要向用户提供这些服务,并承诺他们的个人数据不会被滥用。对于保险公司或其他中小型企业客户,大数据运营商提供的核心产品是数据,但更可提供大数据基础设施租用、承担大数据分析任务甚至基于分析结果的营销执行等附加服务。
细节二:如何规避隐私争议。个人数据的隐私问题是大数据商业价值受到质疑的主因。实际上,这个问题可以从理念上和模式上给予回答。理念上,隐私问题自人类社会形成之初就存在,用户心中总是存在一架权衡隐私顾虑和业务价值的天平。当前的隐私争议不在于隐私被使用了,而在于被滥用了,没为用户带来便利/效率/等正面价值甚至反而带来负面价值。因隐私顾虑而扼杀业务创新只会在竞争中被淘汰,将注意力集中到利用个人数据创造更智能的业务,使用户心中的天平偏向业务价值,这才是解决之道。模式上,大数据运营商扮演的是银行角色,受消费者委托管理数据,基于数据所有者与数据使用者之间的契约关系执行数据开放动作,具体由双边平台的双方自愿谈判商定。比如,保险公司若需要使用个人数据可向个人提供保费折扣,达成协议后大数据运营商则执行这一契约,按照协议开放指定数据,并全程监督数据使用。上述过程并不涉及隐私侵犯。对于那些无需识别个人身份的大数据应用,交易成本可以更低,正如银行没有必要向每个储户说明他/她的存款被用于哪一笔放贷或投资,而只需履行利息承诺即可。
细节三:如何获得网络效应。在上述经营模式下,大数据运营商将获得网络效应,这种效应源于该平台上各行各业的企业。与话音业务类似,企业使用该平台提供的数据的同时,也在为该平台增加更多的数据资产。比如,“用户A在facebook上的Like行为记录”这一数据,若被WSJ网站使用,除了为WSJ产生“内容精准推荐”的价值外,用户A对该内容的浏览行为和评论(如果有)也会被平台记录,从而提升原数据质量(如置信度评价)、丰富了关于用户A的数据,其他企业将可从该平台获取更多价值。这样,企业围绕平台构成了大数据共享网络。大数据平台成为网络效应的受益者。于此同时,企业客户在使用大数据产品时也具有边际效用递增的特征,数据用得越多,数据的价值就越大。可见,大数据经营完全符合新经济规则。数据不因使用而损耗,且随着使用次数增多价值反而变大,边际成本趋于0,边际效用递增,大数据的价值与数据节点及数据使用者节点的平方成正比。
细节四:如何将流量转化为大数据资产。针对流量业务,一方面优化现有面向消费客户的经营模式,另一方面从流量中提取大数据资产,作为构建面向企业客户大数据经营模式的基础,两者交叉补贴,平摊成本。用户在消耗流量的同时,也在为大数据经营添砖加瓦。一个基础设施,两个经营模式,这是成本收益困境的基本解题思路。对流量经营而言,智能管道存在的价值是调控和配置管道资源,但智能调控和配置的前提是对调控对象的深度识别和解析,而这正好就是从流量提取大数据的过程。因此,智能管道将成为电信运营商获取大数据的重要来源。大数据的另外两个重要来源是BSS和各种信息类业务的后台数据。不同域数据之间的混搭会取得1+1》2的效果。
(四)大数据平台运营商的演化
在未来实体世界与数字世界无缝整合的世界,高速流动的信息将充当不可或缺的纽带。谁能掌控两个世界相互耦合的界面,谁就将成为下一轮破坏性创新周期中最大的赢家,而大数据平台就是这样的关键环节。当前虽然总体上处于大数据1.0阶段,但基于数据重要性被不断认知、传统企业拥抱数字化商业模式热情高涨等事实,大数据领域正孕育着一个前景广阔、异彩纷呈的大市场。
未来的大数据运营商绝不仅仅包括现在的电信运营商,互联网巨头如facebook、google和阿里巴巴等也将沿着这一方向演进。阿里巴巴提出的“电商、金融、数据”三步战略就是明证。阿里巴巴和新浪微博、高德地图等之间的资本联姻,也是走在数据布局的路上。平台会扩张,生态会成长,当时代被烙上大数据的印记,围绕大数据公共平台运营商成长起来的大生态注定会成为信息文明的基石。从平台演进的角度,本文认为大数据经营的成熟将经历消费平台、垂直平台和公用平台三个阶段,简要描述如下:
第一阶段,竞争者们借助消费平台海量用户数据的原始积累取得了大数据平台之争的入场券。比如阿里巴巴的淘宝、腾讯的微信、facebook以及电信运营商的流量,都是典型的消费平台。各类消费平台有层次和领域的区别,渗透争夺十分激烈,但就数据储备而言都具备了进阶的资格。同时,OTT玩家普遍发育了后向广告模式,与电信运营商的流量前向收费模式相比,收入规模小但利润率高。
第二阶段,基于用户积累向垂直行业扩张或者某个特定的环节延展。这个阶段,消费平台依然非常重要,但随着数字世界与实体世界的整合,固守数字世界很快遇到增长极限,因而越来越多的资源将投入面向线下传统行业的拓展。垂直行业方面,包括金融业(互联网金融、移动支付等)、健康业(移动健康、移动医疗等)、汽车业(智能汽车、车联网等)。特定环节方面,包括营销(广告),CRM(如微信公众账号、淘宝卖家服务、FacebookConnect等)、产品设计(如天猫和华为定制手机合作等)。毫不意外,扩张的行业B2C特征较明显,延展的环节则以营销环节为出发点,而电信运营商通常以行业扩张为主,OTT以环节延展为主。总体而言,这些面向各垂直行业和特定环节的服务都以相对独立的小平台形式存在,每个垂直平台的经营模式各不相同,大数据资产进一步积累,但以信息为中心的经营模式仍未确立。从进阶第三阶段的角度考虑,衡量第二阶段经营成败的标准有两个:其一是是否与政府和传统企业建立了全面的信任关系;其二是是否掌握了大部分行业都需要的20%的关键信息。
第三阶段,面向全体社会成员的大数据公共平台出现。大数据在企业生产和消费者生活各环节的价值被充分认识,垂直行业内部的信息链在第二阶段被打通之后,进入跨行业信息共享阶段,大数据时代来临。在前文提到车联网信息、个人健康信息和保险公司的共享是这一阶段的典型案例,而车联网、移动健康领域的数据布局和与保险公司信任合作关系的建立,则已在第二阶段完成。值得强调的是,消费者的作用非常重要,因为各行业间打破信息隔阂唯一动力就来自于它们具有共同的用户。这一阶段,数据透明/共享/流动的范围、网络效应的范围、创造价值的范围达到了新的高峰。
上述三个阶段所描述的经营模式是叠加而非替代关系。从大数据的角度看,第一阶段着眼于积累原始资本,第二阶段注重数据的垂直投资布局和精耕细作,第三阶段注重跨行业数据的共享运营。但从经营视角来看,最终大数据运营商将具有三种核心业务、三种盈利来源,比如阿里巴巴的三步走战略,并不是金融代替了电商,数据代替了金融,而是按照这个路径最终形成三足鼎立的多元共生业务组合。
(五)对电信运营商的建议
既不甘于管道的低利润率,又无法适应OTT基于速度和创意的竞争规则,电信运营商一直在寻找位于管道业务和OTT业务之间的黄金地带。本文给出的答案就是大数据经营。大数据经营与传统通信经营在业务属性和经营模式上具有内在延续性。传统通信业务通过将个人连成通信网络解决个人与个人之间的信息不对称,大数据经营通过将企业连成大数据网络解决行业与行业之间的信息不对称,这个方向符合信息社会的演进脉络。通过选择正确的模式,大数据经营完全可以和传统通信业务一样具备网络效应等新经济特征,从而带领运营商走出当前流量经营模式的价值困境。
对电信运营商而言,大数据的战略地位应从内部运营工具提升到“新大陆”,移动互联网业务则从“新大陆”降低到撬动新大陆的“杠杆”。如果目标和OTT一样都是大数据,而获取大数据的手段并非仅自身运营OTT业务一途,电信运营商何必一定要吊死在这棵树上呢?调整心态后再参与OTT竞争,也许更从容不迫。因此,电信运营商无需过于纠结为何不具备互联网基因,而应立即与那些OTT站在同一起跑线上一道发力培养大数据基因,构建大数据经营模式。大数据目前还处于非常早期的阶段,大数据竞争最终将是资源密集型的,电信运营商在这个战场上的位势要比在OTT战场上好得多,至少暂时如此。比如,腾讯有微信和QQ,阿里有淘宝和支付宝,电信运营商有流量。关于下一步的布局,有如下几点建议:
1)信息基础设施的整合、开放与融合。最宝贵的资源不是网络、不是IT,而是信息。用全局眼光建立统一的、公司级的技术架构、功能架构和数据架构,将企业内部的各种资源包括网络资源、计算资源、应用和内容资源甚至物理设施资源纳入资源池,在此基础上构建资源管理、业务执行与管理、客户和商务管理等应用平台。最为关键的是,这些应用平台必须共享一个中央用户数据库。要实现这一目标,最大的阻碍是传统电信运营商的组织架构。Vodafone的做法是设立首席信息&技术官职位将CTO管理网络的职责和CIO管理IT的职责整合起来,BT的做法是成立Technology,Service&Operations事业部负责网络和IT的规划、部署和运营,事业部CEO亦为BT集团CIO,对各大前台业务单元的CIO具有直线职能权。
1.进行销售的精准策划当前数字出版企业的竞争十分激烈,推出新的产品会有一定的风险。数字出版生产商必须在推出产品前建立一定的品牌形象,以此来减少产品的风险,增加产品的市场竞争力。在大数据的背景下,数据具有很强的经济价值。理论指出,行动是一个人的意愿决定的,这个意愿是个人对社会行为的态度和社会反映。传统的营销方式仅仅关注消费者的话语表达,而从话语中不能深层次观察出受众的心理。利用大数据预测用户行为时,要详细了解消费者对事物的态度和消费意愿,关注消费者的心理诉求。对消费者进行数据分析,整合一定的碎片信息,通过相关计算得出消费者对消费物的态度。和传统的抽样调查相比,数字出版企业利用大数据能够十分准确地把握消费者的具体组成和各个阶段的心理需要,并重新调整经营手段,以此来阶段化调整数字出版各个阶段中的内容比重,针对性地提供服务,增加消费者的粘合度。《卫报》是英国第二大日报,是业界使用新技术的重要先锋,其网站设置了专门的数据频道。其总经理发表了《数字新闻读者的“大数据”蕴藏巨大价值》,认为“大数据”可应用在媒体行业中,消费者的“大数据”隐藏很大的价值,不少数据能够吸引受众,并为内容商带来利益。
2.针对消费者个性需要推出产品个性化贯穿于整个信息化过程中,大数据能够将数据推向一个个性化方向,“这种个性化是基于系统通过分析读者阅读行为、喜好,从而获得对用户需求的感知。每个读者获得专属于自己的书,就是这种个性化服务的一种典型体现。在技术意义上,这种模式是能够成为现实的。”针对消费者的个性化需求推出产品,消费者肯定会购买,当消费者对满足个性化的产品满意时,数字出版的内容也能实现其价值,整个企业能获得一定的进步。消费者接触各种营销推广信息时,消费者的情感态度、认知行为会发生一定的变化,对于这种变化,传统的小规模范围内的问卷调查无法获得准确的信息,根本做不到监测全部,大数据背景下的网络平台将发挥出巨大的作用。淘宝每天会遇到几亿用户,每个用户具有不同的爱好与特征,淘宝将消费者的信息搜集起来,进行大数据分析,根据消费者的个人需要再去投放最合适的个性化产品广告,从而达到淘宝销售传播的效果最大化。建设个性化的数字出版平台能够把消费者和出版的企业联系起来,这点在当今大数据时代具有很重要的意义:数字出版的个性化平台要和各种终端(手机、IPad)、社交媒体(微信、微博、论坛)进行无缝连接,促使消费者得到快捷的阅读和便利的分享体验。数字出版内容的个性化定制购买与在线支付紧密联系在一起,这样,消费者就能轻而易举地购买产品。个性化数字平台和数据分析商进行链接,实现消费者的体验需求。例如,对于收费电子书,可以提供部分章节让读者进行阅读,这些电子书能够在被阅读时随时评论和分享。当读者在阅读时,平台能够及时收集到数据,关注到读者的静态与动态,读者的年龄、性别、收入、学历、地点、工作、读完免费部分会不会购买后继章节、读者一般在一页上停留的时间长短等信息全部被搜集起来,通过综合信息来分析和判断用户的经验。对于具有语音交互功能的数字出版App,数字出版商可以联合智能手机、IPad等阅读端的触摸屏、麦克风来监测用户的使用时间和场景,利用监测数据来评定这个App的质量。
3.优化研发生产整体平台在现代数字出版企业管理过程中,数字出版产品自开始研发阶段,就由RDM(ResearchDevelop-mentManagement研发管理系统)进行管理,生产过程一般由ERP(EnterpriseResourcePlanning企业资源计划系统)和数字化制作工具管理,供应链由SCM(Supplychainmanagement供应链管理)进行管理。如果使用系统对整个产品研发生产整体流程进行分析,就类似于将整个研发生产的整体流程进行扩大分析,并抽取精华进行观察,这对优化整体流程,提高产品的质量与生产效率具有很大的意义。产品研发过程中,可以实时利用大数据一起来建设协同编纂平台,在这个平台当中,作者、生产商、编辑、校对、平台商等相关工作人员可以一起进行协同编纂,并进行协同,形成新的BPP(BusinessProcessPlatform企业业务流程平台)。在这个协同编纂平台中,作者、生产商、编辑、校对、平台商等相关工作人员在工作过程中产生大量的非结构化数据。利用大数据对这些非结构化数据进行分析,往往能发现文本中的常见错误、制作中的瓶颈、工作人员能力的欠缺等,相关工作人员从而可以在后继的工作过程中拾遗补缺,调整工作方法,采取措施进行应对。当今诸多消费者不愿付费阅读的问题也可能会被较好地解决。鉴于协同编纂的兴起,数字出版企业就能根据目标消费者阅读需求来开发数字产品,注意产品的设计者、生产商、编辑、校对、平台商等每个环节工作人员与消费者之间的互动情感,对消费者的反馈信息进行开发,反思协同编纂中哪些工作环节导致消费者付费意愿不高,促使开发消费者付费心理的问题在根本上得到重视,这样,消费者就会拥有付费的意愿。
4.国有数字出版媒体利用大数据做出表率我国的国有数字出版单位属于“事业性质,企业管理”,同样也受到大数据的影响。国有数字出版单位生产力的未来提升,必然和大数据的获取、释放紧密相关。西方的媒体、政府、公民三者实行“媒体-政府-公民”三足鼎力趋势,三者之间保持相对独立,媒体得不到政府的资金或数据支持。我国的国有数字出版单位来源于国有传统媒体,充当着党和政府的喉舌,比其他商业媒体容易获得大数据。国有数字出版单位在不违背保密原则的前提下,应该尽可能和政府保持沟通,获得一个议题的全部数据,分析相关性,并最后释放到产品生产,这样就能在和他国媒体、其他商业媒体的竞争中保持自身的优势。国有数字出版单位对数据的获取和释放有着一定的依赖度:国有数字出版单位依赖政府收集数据的程度,国有数字出版单位依赖政府释放大数据的程度。大数据时代,国有数字出版单位的力量想壮大,数据权限的获取和释放程度是很重要的方面,国有数字出版单位在优先利用大数据将自身产品做大做强时,也就为其他商业媒体做出了表率,提示了一定的经营路径。
二、未来大数据技术在数字出版中存在的缺陷与挑战
1.部以XML格式输出———该问题成为当前大数据技术中的重要难题。依托大数据,从庞大的非结构化数据中来揭示新的意义和关系,并实现精准生产和精准营销是当下数字出版面临大数据而努力的方向。只有完善的XML格式输出技术,未来的数字出版才能做到聚类分析、聚类融合、网络分析、数据集成、可视化分析等。
2.收集渠道闭塞搜集各种信息来完成大数据采集是数字出版未来的趋势,但目前的数字出版信息搜集仍存在一些缺点:数字出版产品在整个研发、生产、销售过程中还没有彻底完成信息化经营,整体搜集难度显得较大;数字出版的云存储平台根本不具备海量存储功能;数字出版中的内容商、平台商还没有完全转换成数据提供商,因此,他们无法及时获取数据;当前的数字出版产品无法记录消费者使用过程中的痕迹,因此即使数字出版中的内容商、平台商变成数据提供商,也无法记录数据。
3.高端数据分析人才极其匮乏对大数据进行分析,熟练运用Hadoop、MapRe-duce、分布式文件系统、并行计算框架等技术的人才十分缺乏,而很多高校的计算机和出版专业也没有专设数据分析研究方向来培养学生,这也直接导致数字出版领域的高端数据人才匮乏不堪。
在现代的营销中,网络营销已经成为其发展中的一个重要方向。很多企业在进行营销的过程中其实不缺少数据资源,最重要的问题就是数据太多,很多时候难以处理。企业需要对各个环节进行统计,还要对客户、市场数据集中统计分析,这些数据统计在一起就形成了大量的数据。企业怎样把这样大的数据进行综合有效管理利用,对于企业来说是个非常大的问题和挑战。互联网时代下的营销需要这些大量的数据,利用大数据对企业内部的营销方案进行抉择,所以,计算机大数据处理技术是非常重要的。网络营销人才也就是集网络技术和营销技术于一身的复合型人才,一个优秀的网络营销人才,不但要熟悉当今互联网发展趋势,具备专业网络营销知识,同时也必须要对网络消费行为和心理足够熟悉,能够准确发现各种网络营销产品的广告功能和价值。此外,还要具备一定的英语、市场、营销等方面的知识。据统计,在我国经济发达区域,有超过半数以上的企业已经或者准备购买相关网络推广服务,从市场人才现状反馈来看,对于网络人才的需求在不断上升。在一些招聘网站中,新浪、网易、谷歌以及百度等网络公司均有大量的空缺岗位,其中包括客户维护经理、企业广告经理、网络营销顾问、商务运营经理、商务研究开发工程师、服务营销代表等,但是在长期的招聘中,很难招聘到令人满意的人才。在大数据环境下,网络营销也在不断得到广泛应用,由此可以明确地看出目前经济环境下对网络营销人才的需求还在不断提升。
二、大数据环境下高职院校精准营销人才的培养模式
1.注重核心课程建设,确定培养目标。通常在高职院校中所开设的网络营销课程都倾向于网络技术方面,有的院校则倾向于网络营销理论,从而导致和市场营销专业、计算机专业相重合。一位优秀的网络营销人员不仅要具备市场营销理论与实践能力,同时还要了解网络运营相关知识。因此,各大院校在开设课程时要做好营销、网络、计算机等课程的平衡工作,尽可能地根据当下社会所需调整所开设课程。高职院校教学除了基本的理论和实践以外,还要充分掌握开展网路营销的操作思路和运作技巧。为此,高职院校可从以下方面作为人才培养目标。首先,人才培养目标,一是具备网站推广专员工作能力技巧;要求学生在未来工作中能协调好与客户的关系,并具备营销技巧,如群发、邮件列表、新闻组、论坛等。具备在线服务工作能力技巧,如网上支付、Btoc等。二是具备网络营销规划、网站设计、维护及管理能力;具有网络编辑工作技巧,如流程设计规划、数据信息维护等。具备网站推广工作能力,关键字、搜索等引擎营销等。三是具备市场调研工作能力和技巧,如调查实施、问卷设计、调查方案、调查报告等。其次,知识教学目标。学生在学习过程中要掌握网络中产品策略、市场定位、网络营销渠道营销方法、掌握网络营销基本概念理论、掌握网络营销环境分析,如市场环境、直接环境、间接环境、消费者行为分析等,掌握网上服务及管理等知识、掌握网上市场调查方式和方法。
2.注重实践教学内容设计。实践教学指以当前所需技能为基础开展网络营销模块教学,并结合物流、B2B、B2C等方面培养学生动手能力。总体来说即以网络营销案例分析为主线,知识点和课堂讲解相穿插,让学生在课堂中制作电子商务网站和上网联系,以此增强知识点逻辑性。实践教学能调动学生学习兴趣,其电子教案的深度和重点呼应教学大纲。最后,根据电子教案讲授操作要领,达到培养学生动手能力的目的。网络营销实践课程目的在于培养学生动手能力,促使学生往应用型人才方面发展,它在整个网络营销课程中起着十分重要的作用。在设计课程实践教学内容中可根据高职院校培养目标和职业发展的特性来设计,由于高职院校对学生定义多在初、中级管理者,针对此将职业特性融入实训环境中,按员工职业生涯规划策划分为掌握技能、培训学习、基层管理及中层管理不同阶段。如模拟网络营销调研内容,可开展的实践项目有:进行市场环境、供给、需求等影响因素的调研。掌握技能方面以网络营销调研的方法运用,实践项目为运用多种调研方式进行营销调研。初级管理方面以网络营销调研的方法、内容、程序、实施管理为主,分析调研方法的使用、内容合理性、调研程序、监控实施过程等。通过实践课程使学生从知识、技能、心态及管理等各个方面都有不同程度的提升,尤其在课程教学目标中融合了职业性和职业化,进而培养学生的沟通、协调能力。
3.以项目化教学法推动人才培养。项目教学法的最大优势是让学生从被动学习变为主动学习,和传统的“填鸭式”教学大有不同,院校一般会与企业建立良好的合作关系,不仅能解决企业技术力量薄弱和人手不足等问题,还培养了学生自主学习和主动求知的技能。此教学方法针对网络营销分为4大模块,分别为目标市场开发技能培养模块、4PS营销计划技能培养模块、市场营销调研技能培养模块、提高营销重要性认识模块,全方位激发学生发挥自身智慧和才能完成教学任务。具体实施方法如下:一是设置课程情景。设置与企业大致相同的教学环境,引导学生熟悉企业的工作氛围。如制定等级和工作制度让学生尽快转变思想,从学生转变为员工。二是示范项目化教学法的讲解和过程。和学生讨论运用哪一种项目化教学法才能有效实现教学目标,给学生讲解项目化教学法内容,并针对教学过程给学生进行示范。三是制定项目。制定教学大纲,了解企业与学院的合作关系,与企业基层人员探讨教学目标,突出专业培养技能。四是学生协作完成项目。学生可以小组为形式完成教学任务,在组长的带领下根据教师示范内容共同合作完成本次项目。五是评价总结。根据本组项目内容、人员分配、项目完成度、所遇到问题等效果和情况进行总结,并做出评价。
4.优化学校实践教学。第一,优化课堂实践体系。在当前高职院校教育中,可以根据教学情势,形成课内课外两个实践体系,在专业实践中,主要针对专业见习、讲授练习、课程施行、课程计划以及课程实践、结业练习等,对学生进行较全面的实践教学。基于学校的办学定位,确保学校营销人才可以直接走向就业市场。第二,整合课堂实践资源。营销专业学生教学中,要加强实践课程资源整合,可以组建实践课程讲授平台,实现教学资源共享,固化学生的专业理论知识,凭地方经济增长对人才的特别需求,以及根据学校自身办学现实环境,找准办学定位,造就精准商务人才。第三,设置创业、就业实践模块。在对学生进行实践教学、培养精准营销人才时,应该进一步增强对实践基地设置装备的部署工作,开展校企合作,满足学生对学校教育多样化的知识需求,拓宽学校人才培养的渠道,深化执行学校办学体制改革。校企合作不仅是职业教育中的一个特色,更是通过校企合作的方式,为实践教学提供环境,在良好的合作共赢模式下,使学生可以更好地将所学营销知识应用到实践中,提高学生对营销技术的掌握水平,培养更多的符合实际需求的营销人才。对于学校的实践教学管理,应该做好实习与就业相结合的管理模式,在当前就业形势严峻的情况下,不仅应该使学生在实践实习中提高自身素质,而且也应该提升学生的工作能力,并且适当地为实习生提供就业机会。重视学生的个性化需求,并制定相应的教学管理模式,结合学生实习情况,建设良好的实习教学环境,使得学生的潜能得到充分挖掘,满足学生个性发展需求。第四,提高学生学习主动性。在实践教学中,可以应用案例讲授、开导式讲授以及主体到场讲授的教学方法,转换传统教学方法,实现师生双边互动,在讲授历程中应本着“教为主导,学为主体,疑为主轴,练为主线”的原则,加大课堂教学方法的创新,促使学生从“依赖性学习”变为“自主性、创新性学习”。使学生由被动担当变为自动学习,提倡学生用丰富的想象去探索事物。另外,对于小组合作实践学习中有几个基本要素,首先就是学生之间要相互依赖;其次就是小组中学生成员之间有高度的责任感;再次就是在合作学习中提高学生的相互交流能力,让学生可以在不知不觉中进入教室营造的学习氛围之中,使学生主动学习应用型技术。教师可以在学生的水平达到一定层次之后,再给学生布置高层次的任务。教师应积极学习和推行主体到场讲授法,要学生学会到场讲授计划的制订;在教师的引导下,由学生讲授专题内容;阅读参考册本、撰写读书笔记;开展评教、评学活动等。这种讲授方法有利于转变教师统统包办、学生悲观应付的被动讲授方法,能培养学生学习的积极性、自主性、创造性,创建同等的师生关系。
三、结束语