前言:我们精心挑选了数篇优质建模艺术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
1.1模型准备
首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设
在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立
在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解
建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果
应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。把求得的数学结果返回到实际问题中去,检验其合理性。如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用
2.1DNA序列分类模型
DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。对于模型的好坏,可选取已知分类的DNA序列进行检验,若按照该模型做出的分类与已知分类相符,则模型可取,反之则需调试样本变量,直到取得满意的结果为止。
2.2传染病模型
为了能定量的研究传染病的传播规律,人们建立了各种类型的模型来预测、控制疾病的发生发展,比如说,SI模型(适用于患病后难以治愈)、SIS模型(适用于患病者治愈后不具有免疫力)、SIR模型(适用于患病者治愈后具有终身免疫力)、SIRS模型(适用于患病者治愈后具有暂时免疫力)等。这里以SIR模型为例来做具体地说明。假设不考虑人口的出生、死亡、流动等因素,设总人口始终保持一个常数N,记t时刻的易感染者、已感染者和已恢复者的人数分别为S(t)、i(t)和r(t),则可建立下面的三房室模型:
2.3疗效评价模型
对于同一种疾病,医生根据其经验的不同往往会制定出不同的治疗方案,而每种方案的经济成本不同并且会产生不同程度的副作用,因此合理评价其疗效就有着重要的意义。目前常用的疗效评价模型有多元非线性回归模型、模糊评价模型、灰色关联度模型以及BP神经网络模型等。不论哪种模型都需要先确定评价参数,所谓评价参数指的是以什么来衡量疗效,如在艾滋病疗效评价中,可采用CD4的浓度、HIV的浓度或是CD4与HIV浓度的比值来衡量疗效的好坏。而选取模型时,只要它能把样品的综合疗效客观真实的体现出来,都是有效的。
3结束语
1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
3. 要重视的问题
1)摘要。包括:
a. 模型的数学归类(在数学上属于什么类型);
b. 建模的思想(思路);
c. 算法思想(求解思路);
d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验??);
e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。务必认真校对。
2)问题重述。
3)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a. 根据题目中条件作出假设
b. 根据题目中要求作出假设
关键性假设不能缺;假设要切合题意。
4) 模型的建立。
a. 基本模型:
ⅰ)首先要有数学模型:数学公式、方案等;
ⅱ)基本模型,要求 完整,正确,简明;
b. 简化模型:
ⅰ)要明确说明简化思想,依据等;
ⅱ)简化后模型,尽可能完整给出;
c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
ⅰ)能用初等方法解决的、就不用高级方法;
ⅱ)能用简单方法解决的,就不用复杂方法;
ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:
建模中,模型本身,简化的好方法、好策略等;
模型求解中;
结果表示、分析、检验,模型检验;
推广部分。
e.在问题分析推导过程中,需要注意的问题:
ⅰ)分析:中肯、确切;
ⅱ)术语:专业、内行;
ⅲ)原理、依据:正确、明确;
ⅳ)表述:简明,关键步骤要列出;
ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。
5)模型求解。
a. 需要建立数学命题时:
命题叙述要符合数学命题的表述规范,尽可能论证严密。
b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。
c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。
6) 结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;
b. 对数值结果或模拟结果进行必要的检验;
结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。
c. 题目中要求回答的问题,数值结果,结论,须一一列出;
d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;
e. 结果表示:要集中,一目了然,直观,便于比较分析。
数值结果表示:精心设计表格;可能的话,用图形图表形式。
求解方案,用图示更好。
7)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
8)模型评价
优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
9)参考文献
10)附录
详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:
a. 模型的正确性、合理性、创新性
b. 结果的正确性、合理性
c. 文字表述清晰,分析精辟,摘要精彩
三、关于写答卷前的思考和工作规划
答卷需要回答哪几个问题――建模需要解决哪几个问题;
问题以怎样的方式回答――结果以怎样的形式表示;
每个问题要列出哪些关键数据――建模要计算哪些关键数据;
每个量,列出一组还是多组数――要计算一组还是多组数。
四、答卷要求的原理
1. 准确――科学性;
2. 条理――逻辑性;
3. 简洁――数学美;
4. 创新――研究、应用目标之一,人才培养需要;
5. 实用――建模、实际问题要求。
五、建模理念
1. 应用意识
要解决实际问题,结果、结论要符合实际;
模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
2. 数学建模
用数学方法解决问题,要有数学模型;
问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
ABCD分值: 5分 查看题目解析 >33. 已知双曲线()的离心率为2,则的渐近线方程为
ABCD分值: 5分 查看题目解析 >44. 在检测一批相同规格共航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为
ABCD2.8kg分值: 5分 查看题目解析 >55. 要得到函数的图象,只需将函数的图象
A向右平移个周期
B向右平移个周期CD分值: 5分 查看题目解析 >66. 已知,则
ABCD分值: 5分 查看题目解析 >77. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是
A2B3
C4D5分值: 5分 查看题目解析 >88. 执行右面的程序框图,如果输入的,则输出的的值分别为
A
B4,7C3,7D3,56分值: 5分 查看题目解析 >99. 已知球的半径为,三点在球的球面上,球心到平面的距离为,,则球的表面积为
ABCD分值: 5分 查看题目解析 >1010. 已知,若,则
ABC2D1/2分值: 5分 查看题目解析 >1111. 已知抛物线的焦点为,准线为.若射线()与分别交于两点,则
A2BC5D分值: 5分 查看题目解析 >1212. 已知函数若方程有五个不同的根,则实数的取值范围为
ABCD分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313. 若函数为奇函数,则 .分值: 5分 查看题目解析 >1414. 正方形中,为中点,向量的夹角为,则.
分值: 5分 查看题目解析 >1515. 如图,小明同学在山顶处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在处测得公路上两点的俯角分别为,且.若山高,汽车从点到点历时,则这辆汽车的速度为(精确到).参考数据:.
分值: 5分 查看题目解析 >1616. 不等式组的解集记作,实数满足如下两个条件: ①;②.则实数的取值范围为.分值: 5分 查看题目解析 >简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。17已知等差数列的各项均为正数,其公差为2,.17. 求的通项公式;18. 求.分值: 12分 查看题目解析 >18(本小题满分12分)如图1,在等腰梯形中,,于点,将沿折起,构成如图2所示的四棱锥,点在棱上,且.
19. 求证:平面;20. 若平面平面,求点到平面的距离.分值: 12分 查看题目解析 >19在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表:
21. 根据表中的比赛数据,比较运动员A与B的成绩及稳定情况;22. 从前7场平均分低于6.5分的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;23. 请依据前7场比赛的数据,预测冠亚军选手,并说明理由.分值: 12分 查看题目解析 >20已知函数().24. 若是的极值点,求的单调区间;25. 求在区间的最小值.分值: 12分 查看题目解析 >21综合题26. 已知圆,点,以线段为直径的圆内切于圆.记证明为定值,并求的方程;27. 过点的一条直线交圆于两点,点,直线与的另一个交点分别为.记的面积分别为,求的取值范围.分值: 12分 查看题目解析 >22选修:坐标系与参数方程已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.28. 若直线与椭圆交于两点,求的值;29. 求椭圆的内接矩形周长的值.分值: 10分 查看题目解析 >23选修:不等式选讲已知使不等式成立.30. 求满足条件的实数的集合;31. 若,对,不等式恒成立,求的最小值.23 第(1)小题正确答案及相关解析正确答案
T={t|t≤1}解析
令,则,因为使不等式|x-1|-|x-2|≥t成立,所以t≤1,即T={t|t≤1}.23 第(2)小题正确答案及相关解析正确答案
9.解析