美章网 精品范文 高校物理论文范文

高校物理论文范文

前言:我们精心挑选了数篇优质高校物理论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

高校物理论文

第1篇

我国处于改革开放的攻坚阶段,市场经济的迅猛发展,需要大量综合素质人才,而我国的高等学校招生规模也出现的井喷式的发展。但是,高素质、综合性强的优秀毕业生远远不能满足社会对人才的需要,高等院校现有的实验室,在建设和管理方面也很难满足人才培养的要求。我国高校的规模扩大,将大量的资金投入到学校的基本建设中,如教学楼、图书馆、体育馆、寝室楼等,而实验室的建设资金投入则很有限,特别是基础实验室,没有学校的资金,也没有政府性的专项基金,因而在各个高校的实验室建设中也处于十分尴尬的地位。对于,一般的省属高校物理实验室,大量陈旧、落后的实验仪器、设备还在使用。高等学校的大学物理实验室,离不开所在高校的支持和资助,但是省属高校由于资金和科研工作的滞后,未对大学物理实验室的建设和管理投入足够的的重视,从而使学科发展成为物理实验的瓶颈和绊脚石。许多省属高校认为教学是高校立足的根本,没有必要加强一些基础实验室的建设,应该把更多的精力和财力放到学科建设和教学工作中。长此以往,大学物理实验室的建设和管理没有得到发展,甚至长期停滞、瘫痪,实验室仪器得不到及时维修、更新,学生的学习积极性不高,教师的授课也受到严重的影响。

2学校对大学物理实验教学的管理缺乏认识

尽管高校的教育经费逐年增加,同时也加强的实验室的建设和管理,但是大学物理实验室的全校布局、资源分配、学科定位、项目申请以及教学改革的布置仍然存在重视理论教学而轻视实验培养的情况。学生被动的预习实验、应付式的完成实验,而教师也没有很高的教学积极性,被动的授课,降低了实验学科最基本的认知能力培养,学生发现物理现象和解决物理问题的能力没有得到突出,自主创新能力更难得到锻炼和加强。

3大学物理实验室的开放程度不足

大学生的物理实验,不简简单单是一门课程,更是多学科交叉与综合的实验学科。目前,大多数高校的大学物理实验课程安排不合理,基本是依附《大学物理》所传授的知识,没有进行更深入的发掘。实验的操作性远远超过实验的设计性,大学生被教材和老师设计好的题目紧紧地束缚着,只能按照设计好的模式进行实验,学生的实验能力基本上就等于操作能力,这极大限制了学生的创造性思维的发展。再者,大学物理实验既然是基础性课程,就应该向全校学生开放,无论是理科生、文科生还是艺术生,他们都应该得到相应的学习和锻炼,全面满足培养学生的综合素质的需求。同时,一个学校内的不同专业、不同实验室也应加强沟通和交流(例如:电气实验室、材料实验室、力学实验室等),实验室的设与管理需要资金的大量投入和仪器的大量购置,一个开放的实验室能融合不同学科之间的优点,整合各个学科的长处,达到真正的资源共享,也使学生们从不同实验室得到精髓的知识,对学校的科研和人才的最佳配置也能得到充分的满足。

4物理实验室改革的解决对策

第2篇

在大学物理课堂中教师一般采取讲授式教学,经常都是教师一个人在讲台上唱独角戏,而学生听着枯燥乏味,没有主动思考,教学效果不佳。因此,我们为何不调动学生学习的积极性,让学生走上讲台呢!我院多年来在物理课堂上一直开设讨论课,讨论课是在教师的精心准备下,由教师提出特定问题,学生以小组形式搜集资料,做好PPT,然后在预定的时间各小组派代表走上讲台发表见解,在课堂上进行激烈的讨论,最后在教师的引导下得出正确结论。整个教学过程的主体是学生,教师是学习的引导者。这种方法体现了教学活动的中心不是“教”,而是“学”,实践表明能有效提高学生自主学习能力、团队协作能力、思考问题并解决问题能力、表达能力等,深受学生的喜爱。值得注意的是,教师提出的问题必须针对民办高校应用型人才的培养目标,同时也注意提高学生学习物理的兴趣,所以问题要有一定的实际应用基础和趣味性;另外要针对学生的物理基础,问题难度要合适,不能过于简单失去讨论价值,或者太复杂打击学生学习积极性。

二、把生活引入课堂,增加感性认识

民办高校学生一般理科知识较为薄弱,如果在物理教学过程中采取纯知识灌输模式,过于重视严密的理论推导,一方面会让学生产生难学、甚至厌学的抵制情绪;另一方面由于严密的逻辑推导占据大量的课堂时间,使得教师不得不舍弃一些教学内容而没办法将一幅完整的物理图像呈现给学生。物理学的根源的是现象,而现象来源于生活。“生活即教育”也是陶行知先生教育思想的核心。在教学过程中教师应该根据学生认知习惯和方式,避免一些枯燥的数学推导过程,多举一些日常生活中常见的物理现象,让学生多一些感性的认识,对物理产生认同感。另外教师还应该充分利用多媒体教学手段,在课堂上播放一些小视频进行现象展示,提高学习的趣味性。总而言之,在教学过程中教师应该淡化数学推导过程,重视物理在生活中的实际应用,这样不仅能使物理教学内容变得丰富多彩,还能增加学生的感性认识,培养学生观察生活的能力,同时有助于学生形成一幅比较完整的物理图像和知识框架。

三、分阶段考核评价,重进步而非结果

目前,各个高校对学生物理成绩的考核,一般分为平时成绩和期末成绩,我院期末成绩占比重为70%,以试卷形式呈现。这种考卷的考核方式过于单一,导致一部分同学抱着60分万岁的心理,平时根本不学习,到考试之前抱一抱佛脚,也照样能够通过考试,这有悖于创新应用型人才培养目标。因此我们可以采用分阶段考核的方式,增加考核次数,丰富考核内容。总而言之,考核方式要注意阶段性和多样性。我院近两年也在进行考核制度的改革和探索,选取部分专业进行阶段性考核试点,实践证明分阶段考核的专业对学习的投入度更大,学习效果也比较好。当前,高校的学生评价存在的主要问题是过分强调甄别与选拔功能,忽视评价的激励和促进功能;且评价标准机械、单一,过于强调共性和一般,忽视个性发展和差异性。因此,发展性评价和鼓励性评价更能增强学生的自信心,调动学生学习的积极性,使学生处于主动、积极的学习状态。发展性评价是指在学生学习过程中,综合发挥教育评价的多种功能,运用多种评价手段,通过系统地搜集评价信息和进行分析,诊断学生的学习结果和存在的问题,激励评价者与被评价者发现问题,对照问题改善自己、完善自己,然后求得发展。一方面教师应该采取发展性评价,能适应人才发展多样化的要求。另一方面由于民办高校学生基础较其他本科院校相对薄弱,教师应该包容、承认学生的这种差异性,不过分关注学生某一次课堂上的表现或者某次考核的成绩,而应该纵向比较,关注学生的进步,对学生的进步予以肯定和鼓励,树立学生的信心和自我学习意识。

四、科研与教学相结合,提高学生科学思维和创新能力

现在教学与科研已成为大学的两大职能,教学和科研是相互促进,相辅相成,共同发展的。教师在教学过程中,可以将自己的科研工作和教学相结合,把物理科研的内容、方法和科研成果融入到课堂教学,让学生更加了解物理学的学科特点,了解物理的前沿发展,包括经济效益和社会效益,这有利于激发学生的学习兴趣;同时也可以让学生从物理科研中体会到科学研究的方法和魅力,提高学生的科学思维能力,有助于培养学生的创新意识,有利于实现民办高校应用型人才培养目标。如,笔者在讲到光的干涉这一章中的减反膜时,会结合“溶胶凝胶法制备二氧化硅减反膜”这一科研课题,指出将减反膜镀在太阳能热水器光接收板上,可以减少光的反射,增大太阳能的利用效率。接着结合教学内容提出问题,这个减反膜的厚度理论上要达到多少,而在实验上又应该如何控制?实践证明这些问题跟实际应用联系紧密,提高了学生的学习热情。

五、实验教学和理论教学相结合

整个物理学的发展史是人类不断深刻了解自然、认识自然的过程。实验物理和理论物理是物理学的两大支柱,实验事实是检验物理模型和确立物理规律的终审裁判。物理理论则是对实验观测结果的归纳和总结,并在此基础上去解释新的实验结果和预测新的实验现象。两者相辅相成,缺一不可。因此在物理教学过程中,教师要将理论和实验相结合,使学生构建完整的物理知识体系。

1.将演示实验带入理论课堂:由于物理学是建立在实验基础上的学科,教学呈现方式的合理性与多样性,对“大学物理”教学尤其显得重要。

在大学物理教学过程中引入演示实验,可以使抽象的物理概念具体化、形象化,加深学生对物理概念的理解,也可以大大地激发学生的学习兴趣。发达国家在物理教学上演示实验的普及与多媒体教学手段的辅助值得我们学习借鉴,其中德国大学的物理讲授无演示不成课,每次课都会安排2~3个演示实验,物理概念的引入都有实验的配合,整个大学物理课程演示实验的配置次数达到120~150之多。我院近年来在这方面也做出了尝试,建立了演示实验室,一些小仪器如:弦驻波、陀螺回转仪、音叉等都带入了理论课堂,课堂气氛活跃,学生学习物理的兴趣和效果有了明显的提高。

2.组织实验竞赛,理论教学为实验服务:在传统实验教学中,主要以验证型实验为主,形式呆板,步骤单一,在很大程度上抑制了学生的主动性和创造思维的形成。

目前,一些高校提出了一些新的实验模式,例如:探索型实验、研究型实验、设计性实验等。我院也每年组织学生参加物理实验竞赛,由物理教研室提出实验的主题和基本要求,每三个学生一组通过各种途径查找资料,大胆设计实验方案;然后师生共同论证方案的可行性;接着选取实验器材进行实验操作,在实验过程中分析问题并解决问题;最后进行实验总结,包括实验原理、器材、步骤、数据分析、实验过程出现的问题分析、实验的改进分析等。在此过程中,实验方案的设计并非凭空捏造,一定是以物理理论知识为基础提出的,实验过程中,理论教学时刻为实验提供依据。由此可以看出,教师在物理教学过程中时刻要注意理论和实验的紧密结合,切忌纯理论或者纯实验式的教学。

六、加强物理模型的教学

在物理学中,大到物理理论的建立,小到求解一个物理习题,都有一个建模的过程。物理模型方法是物理学家研究自然界的最基本、最重要的方法。在物理教学中,学生往往对定律、原理和公式记得较熟,但是却不会将这些定律公式运用到实际的物理问题上。究其原因,在于学生不会简化物理问题,不会对问题进行抽象概括和建模。物理学中的概念、原理、定律等都是借助于一定的物理模型抽象和推导出来的。因此,加强物理模型教学,对教学效果和学生的学习能力的提高息息相关。例如牛奶皇冠问题,面对看似复杂的物理现象,我们可以引导学生抽取出最基本的自由落体碰撞模型进行估算。同时供选择的近似条件。这一开放性的物理模型的解决方案并不唯一,可以把更多的思考留给学生课后完成,是学生在该过程中学会把复杂现象的模型简单化、简单模型的条件复杂化,从而学会思考,学会科学研究的方法。

七、小结

第3篇

早在20世纪70年代初,美国华盛顿大学物理系的LillianChristieMcDermott提出,物理教育要建立在研究的基础之上,通过科学分析并解决学生在学习物理课程中遇到的共性困难,提高学习效果。在美国国家自然科学基金的资助下,她开展了物理学习与教育方面的研究,成功地开拓了物理教育研究的新方向。由于对美国物理教育的突出贡献,她获得了RobertA.Mil-likanLecture奖(1990年),Oersted奖章(2001年),2013年她又获得了MelbaNewellPhillips奖[3]。除华盛顿大学外,美国的北卡罗莱纳州立大学、马里兰大学、科罗拉多大学、以及俄亥俄州立大学等也都开始进行物理教育方面的研究。PER的研究队伍具备了雏形,学科建设随之拉开序幕。1994年秋季,在北卡罗莱纳州立大学召开了首次PER大会,商讨PER的研究对象和PER专业研究生的课程设置。更重要的是,PER的先驱者们在会议上起草了一份白皮书[4],递与美国自然科学基金委员会。白皮书的题目为《给美国自然科学基金物理部的建议——支持将“物理教育研究”作为物理学的子学科》。白皮书论述了PER在美国的兴起以及PER在物理学中的重要地位,指出了PER走研究型发展之路的必要性和面临的困难。白皮书中建议美国自然科学基金物理部像支持其他物理研究一样支持PER,提出每年需要约200万美元的资助基金。1999年,萌芽中的PER等到了春天,这年美国物理学会(APS)发表了“关于物理教育研究的声明”,承认PER是成长中的研究领域,支持在美国高校物理系中设置PER研究方向。声明中指出:物理系将会受益于拥有PER这样一个严密的研究领域,PER会使教学质量得到提高[5]。此后,PER得到了美国自然科学基金的大力资助。据不完全统计,2006至2010年,美国自然科学基金至少资助了262个PER项目,经费约为7250万美元,占PER总经费的75%[6]。PER的发展除了经费的保障外,还必须有相应的学术刊物做支撑。经过努力,《美国物理杂志》(AmericanJournalofPhysics)首先大量发表PER的研究成果;之后AAPT旗下的杂志《物理教师》(ThePhysicsTeacher)也开始登载PER文章。为了使PER在物理学科中拥有被公认的高水平研究成果,美国物理学会与AAPT联手,于2005年开始出版电子期刊《物理评论专辑——物理教育研究》(Physi-calReviewSpecialTopics——Phys-icsEducationResearch)[7]。PhysicalReview是享有很高学术声誉的杂志,此杂志设置物理教育专题,使从事PER的教师可以得到正确的评价,并专注于这个研究方向。有经费的资助,有高水平的学术刊物,又有科学且实用的研究方向,使PER在十几年的时间内在美国发展了起来,图1直观地显示了PER小组在美国的分布。美国大学中,做PER的教师有高级别的研究项目,可以指导研究生(包括博士生),并发表高水平研究论文,他们既是研究者,又是优秀的教师。PER的诞生给美国的物理教育与教学带来了生机,使美国成为全球高等物理教育的领跑国家。

2“物理教育研究”的研究对象与方法

PER研究的对象是学习物理的过程以及教学活动如何影响该过程,采用科学的方法探测、甄别学生在学习物理课程中普遍存在的共性困难,揭示学生掌握物理知识的动力学过程,评价学习效果,并在此基础上建立关于物理学习的认知理论,用于开发新课程、新教学方法和新的教育研究工具。PER是围绕学生和学习过程进行的,在我国是一个相对陌生的研究领域。由物理学家开拓出来的PER继承了物理学的研究传统与方法,强调观察、数据采集与分析,并重视应用。PER有实验和理论两个研究方向。实验方面的主要工作是采用定性、定量或两者结合的方法,来测试、记录并了解物理学习过程。定性的实验研究是针对少量典型学生进行,通过对学生进行访谈与跟踪调查,记录物理学习(包括学生的思维)过程。为了实时地了解学生的思维,可采用“边想边说”实验,即要求学生看到教师给定的测试后,不停地用语言表达头脑中的思路,直至给出解答。通过录像、录音等方法记录实验全过程,并予以保存。定量的实验研究主要面向大量学生,使用标准教学测量工具进行各种测试,了解学生整体掌握知识的平均水平,以分析、评价学习效果。现在,PER已获得了大量相关实验数据。400多年前,开普勒基于第谷毕生积累的天文学数据,归纳出了著名的开普勒三定律。今天,PER也在积累着各种关于物理学习的数据,为揭示和控制物理学习过程进行准备。开拓PER的物理学家们明白,如果没有理论研究,PER不过就是为提高学生学习效果的一系列反复实验。PER理论研究方面以马里兰大学的Redish,Hammer和Elby等人的工作最为著名,他们研究学生在解决物理问题时的先天直觉是什么,学生头脑中的概念是怎样演化的等问题。当然,PER理论还处于起步阶段,它的发展依赖于更多的实验数据和理论研究的进一步深入。

3“物理教育研究”给高等学校物理教学带来的新生机

PER使物理教学理念、教学技术与环境、教学方法、教材等方面获得了许多进步,本文集中介绍物理教学理念、教学技术与环境这两个方面的进展,因为这两个方面国内较少涉及,且与美国差异较大。PER使物理教学走上了科学发展之路。教学方法的改革和教学的内容安排等等都必须经过实际教学过程的科学化测试和检验,并以学生的学习收益为最终判断标准。也就是说,衡量教学的成功与否,不仅在于教师讲授了什么,更重要的是在于学生到底学到了什么?只有被大量教学实验数据验证的、使学生获得更高学习收益的方法才是令人信服的。翻开美国的《物理评论专辑——物理教育研究》、《美国物理杂志》等期刊,可以找到对物理教学的各种测量。例如:通过分析6000名左右学生的学习收益,发现交互式教学方法的效果优于传统的讲授式方法[9];哈佛大学Mazur小组用十年的数据表明,Mazur发明的同伴教学法(PeerInstruction,简称PI)能够使学生更好地掌握物理概念和解决问题[10]。一些测量结果还挑战了传统的教学观念。在大多数人看来,掌握知识对于发展学生的科学推理能力是非常重要的。然而对学生科学推理能力和知识状况的实际测量表明,以传授知识为目的的传统教学,对于培养科学推理能力没有帮助[11,12]。对于学生学习收益的测量数据表明,采用传统讲授式方法,学生的学习收益很低[13];有趣的是,测量结果还显示,学生的学习收益和学习困难基本上与任课教师没有关系[13,14]。早在1933年,美国著名教授F.K.Richtmyer写道:“教学,我说,是艺术,而不是科学,……教学绝不能被称为科学[15]”。这仍然是目前很多人对于物理教学的认识。PER使这个观点在20世纪末和21世纪初被更新了。CarlWieman是美国科学院科学教育委员会主席,2001年诺贝尔物理学奖得主,他在《知识的诅咒——为什么对于教学的直觉经常失效》一文中写道[16]:“聪明的物理界已经找到了在初始直觉失效的领域取得进展的方法,例如,原子结构的发现。这个方法在于细致地、客观地进行实验测量并利用得到的数据完善我们的认知和直觉。对于物理教学,这意味着要着眼于显示人们是如何学习的数据,着眼于显示学生是怎样学到或学不到物理知识的数据”。物理教学也要从已有的各种数据出发,而不能仅凭直觉。PER将科学理念注入于物理教学之中。PER催生了各种标准教学测试工具的研发。就像可以利用电压表显示电压值一样,教学测量需要测试工具。这些测试工具实际上是针对某一部分物理知识的诊断性测试题目,其功能类似于物理实验中的各种测量设备。美国已经研发出来的测试工具有:FCI(测试牛顿力学概念)、BEMMA(测试电磁学概念)、LCTSR(测试科学推理能力)等等[17]。当然,教学测试工具的有效性也要经过测试才能被认可。FCI刚刚研发出来后,教师们感觉题目设计过于简单,有侮于学生的智商,以致于不乐意使用它。但是,实测结果与教师们的预期并不一致。哈佛大学的测试就是一个典型的例子。哈佛大学物理系EricMa-zur教授偶然看到了PER的相关研究,对自己的学生进行了FCI测试,结果是学生们的得分很低,甚至低于期中考试成绩。Mazur教授认为,期中考试比FCI更难、更复杂。惊讶之余,Mazur教授着手改变教学方法,发明了著名的同伴教学法[18]。此后,标准测试工具的开发受到重视。除了测量物理知识的工具外,还有一些工具用于测试学生的态度和期望与学习效果之间的关系,如科罗拉多大学关于学习科学课程的态度测试(CLASS),马里兰大学的物理期望测试(MPEX)等。尽管对于教学测量工具的使用方法等方面还有一些批评意见,但是总体上认可了测量工具在物理教学研究中的重要作用。伴随着测量工具的开发,教学测量方法也逐渐定型,如判定教学收益的前测—后测法,统计理论在物理教学研究中的应用等等。Hake提出了一种测量学生学习收益的方法[9]。他利用测试工具,在学习开始前进行测量,称为前测,以了解学习开始前的情况;学习结束后,再次进行测试,称为后测。他定义学习收益g为g=sˉf-sˉiT-sˉi,其中sˉi为班级学生前测平均分,sˉf为后测平均分,T为测试题目的总分。g0.7为高学习收益,0.3g<0.7为中等收益,g<0.3为低收益。将其与统计方法结合,便可以对学习的效果进行规范测量。这个方法已经被物理教育界的许多人用来做教学研究。PER的研究结果表明,交互式教学在许多方面都优于传统讲授式教学。为了开展交互式教学,在美国开发出了一种新教学技术——课堂交互反馈系统,也叫做clicker。北美大约有800所大学、百余万学生曾使用clicker在课堂上学习。课堂交互反馈系统利用无线电发射、接收系统以及配套软件,实现了课堂上多个学生与教师间的集体实时互动[19]。课堂上,教师首先设置问题,之后学生通过手持发射器发射答案,教师利用接收器接收来自学生的多路反馈信号(如图2)。经过计算机处理接收信号后,全体学生的结果被实时地显示在教室的大屏幕上,同时每个学生的反馈信息均被记录下来,逐节课积累后,形成各个学生的电子学习档案。该教学技术不仅支持了大班互动教学,而且还促进了教学方法和教材的改革,目前,课堂交互反馈系统中的题目已经出现在了美国大学物理教材中,供教师和学生使用[20]。交互式教学的实施还导致了教室布局的变化,以讲台为焦点的传统教室布局被更改,代之以圆桌为主体,集讲授、课堂演示和学生小组学习等功能为一体的多媒体教室。北卡罗莱纳州立大学物理课教室布局如图3所示[21]。目前,麻省理工学院的TEAL教室,俄亥俄州立大学的PALET教室等均采用了类似的教室布局。此外,在美国还开发出了物理工作室、网络作业系统、三维立体演示等方面的教学技术。

4结束语