美章网 精品范文 石油化工论文范文

石油化工论文范文

前言:我们精心挑选了数篇优质石油化工论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

石油化工论文

第1篇

(1)操作室和机柜室应留有20%的扩展空间(定量要求)。(2)操作室面积每增加一个操作站,面积增加5~8m2。(老规范为6~10m2)。(3)成排机柜之间间距为1.6~2.0m(老规范为1.5~2.0m),机柜距墙(柱)间距为1.6~2.5m(老规范为1.5~2.0m),最小间距要求增大。(4)控制室建筑物耐火等级应为一级(老规范为二级)。(5)活动地板设计均布荷载不应小于23000N/m2(老规范为5000N/m2),活动地板荷载增大很多,更安全了。(6)操作室、工程师室净高不宜小于3.0m,机柜室不宜小于2.8m(老规范全部要求为2.8~3.3m),新规范没有对上限进行规定,设计灵活性更大了。(7)电缆穿墙入口宜采用专用的电缆穿墙密封模块,并满足抗爆、防火、防水、防尘要求。当条件受限,采用电缆沟进线方式时,电缆入口处洞底标高应高于沟底标高0.3m以上,应采取防水密封措施,室外沟底应有排水设施,并且电缆穿墙入口处的室外地面区域宜设置保护围堰(基础墙体洞口采用防火材料密封,沟内冲砂。不得在室内地面以上的外墙上开设电缆进线洞口)。(8)控制室的空调引风口、室外门的门斗处、电缆沟和电缆桥架进入建筑物的洞口处,需要时宜设置可燃气体和有毒气体检测器。(9)抗爆结构的控制室设置无线通信系统时,应设置无线信号增强设施,以保证与外界的正常通信。

2石油化工控制室抗爆设计规范

(1)抗爆控制室宜布置在工艺装置的一侧,四周不应同时布置甲、乙类装置,且布置控制室的场地不应低于相邻装置区的地坪。(2)抗爆控制室应独立设置,不得与非抗爆建筑物合并建造。(3)抗爆控制室应至少在两个方向设置人员的安全出口,且不得直接面向甲、乙类工艺装置。(4)抗爆控制室建筑平面宜为矩形布置,层数宜为一层(不应超过两层)。(5)抗爆控制室宜采用现浇钢筋混凝土结构。(6)在人员通道外门的室内侧,应设置隔离前室。(7)活动地板下地面以上(即活动地板与室内基础地面之间)的外墙上不得开设电缆进线洞口。基础墙体洞口应采取封堵措施,并应满足抗爆要求。(8)抗爆控制室的重要房间、一般房间的空调系统宜分开设置。(9)重要房间空调设备的启停及故障报警信号应引至DCS。

3石油化工仪表系统防雷设计规范

(1)控制室建筑物应按GB50057第一类防雷建筑物的规定,采取防雷措施。老规范要求为二级。(2)仪表系统设备的安装位置距建筑物外墙的内壁距离应大于1.5m。对于抗爆结构建筑物,仪表系统设备的安装位置距建筑物外墙的内壁距离应大于1.0m。

4结束语

第2篇

1.项目选取缺乏适应性

专业核心课程项目的选取大多来源于大型石化公司生产岗位,校内的生产实训装置与大型石化公司生产一线装置相比较,差距太大。导致工作任务项目化在实施过程中难度较大,有很多任务根本无法实施,最终导致项目化专业核心课程又回到了传统的授课模式。

2.专业教师缺乏实践性

高等职业教育要求教师具备“双师”素质,并不是拿到了“高级工证”或“技师证”就属于“双师”型教师。学院石油化工生产技术专业教师的结构不合理,老教师具有一定的企业生产经验,但教育理念过于传统。青年教师学历层次较高,专业理论功底较扎实,但由于从教时间短,又缺乏实践操作经验和实践技能。绝大部分教师对教育教学理论了解不深,对职业教育教学规律把握不准,对教育教学技艺应用不够熟练。

3.企业参与度不足

对学生生产实践能力的培养,只是基于企业,而企业本身并没有较好地参加到学生实践能力培养中来。目前的校企合作只局限于把企业的生产能手、技能专家等召集到一起讨论课程的开发,往往忽略了课程的实施环节。聘请的企业兼职教师并没有真正参与到教学当中去。另外企业作为“校企合作”伙伴,对项目化教学的支持也不够。有些任务的实施是需要在企业生产一线进行的,但往往由于客观原因导致学生进不了工厂。

4.学生缺乏社会责任感

化工专业毕业生的就业岗位大多需要倒班,有些工厂离市区还很远。一些毕业生下不去、扎不深、留不住、难干好,跳槽现象较严重。

二、创新人才培养模式的思考

1.职业岗位分析

从近几年的石油化工生产技术专业毕业生的就业情况来看,毕业生的就业岗位有6类:一是生产一线的操作岗位。从事化工生产的操作、调试、运行与维护,这类人员占调查人数的30%。二是生产一线的技术岗位。从事化工产品的质量监督与控制等,这类人员占调查人数的40%。三是生产管理岗位。从事生产组织、技术指导和管理工作,如,工作在企业或公司的计划科、生产科、企管办等,这类人员占调查人数的15%。四是产品的销售、售后的技术服务等岗位。这类人员占调查人数的5%。五是产品的开发、科研、制图等工作岗位。这类人员占调查人数的5%。六是行政管理和个体、其他等岗位。这类人员占调查人数的5%。以上调查结果表明,高职高专石油化工生产技术专业是培养生产、管理、服务一线需要的、具有综合能力和全面素质的技术技能型人才。毕业后,学生主要从事成熟技术与管理规范的相关工作。如,操作与维修人员、工艺技术人员和管理人员等。从学院对2011届和2012届毕业生进行调查的结果显示,毕业生认为,本专业最需要改进的地方是“实习和实践环节不够”。这可以看做是社会对高职高专化工专门人才规格要求的直接反应。

2.职业能力分析

职业能力是确定专业培养目标的依据,良好的职业道德和职业素质是学生未来做好所从事工作的前提和基础,没有良好的职业道德和职业素质不可能做好职业工作。化工行业对高职石油化工生产技术专业人才的职业能力要求包含:操作能力、认知能力、表达能力及其他的相关能力。(1)操作能力是履行岗位职责的动手能力。包括:岗位需要的职业技能。如,化工仪表、仪器的操作及使用和计算机的操作等。基本的实验能力及设计能力,要求理解石油化工生产技术工作的内容要求和操作程序,掌握应知应会的职业技术规范,具有处理生产中出现的事故,一定的维修化工设备的能力等。具体的项目是:化工现场的操作、工艺流程编制实施、工艺参数的调整规范、紧急事故的及时处理和技术改进等。(2)认知能力是指获取知识和信息的能力,观察和判断临场应变的能力,运用所学专业知识分析解决实践问题的能力,以及进行技术革新和设计的创新能力等。(3)表达能力是指语言表达、文字表达和数理计算及图表展示的能力。(4)其他相关能力主要指,组织管理能力、自我发展能力和业务交往能力及社交能力。能将工程设计转变为工艺流程,将管理规范转化为管理实效。具有学习小知识、接受新事物的本领,并能自觉开发、充分发挥自身优势。能够处理好业务关系和人际关系,善于与人合作交流,并能沟通、协调横向关系与纵向领属关系。

3.创新人才培养模式

结合新疆经济发展需要大量石油化工行业的技术技能型人才的实际,构建出适合化工生产特点,符合人才培养规律的“校企共育、教训融合”的人才培养模式,按企业岗位能力要求设置课程教学内容和教学环节。(1)优化专业核心课程体系。根据学校办学定位,炼油化工行业对专业人才培养的要求,以职业综合能力为核心,与行业企业合作进行基于工作过程的课程开发和设计,形成“工学结合”特色鲜明的专业核心课程体系(见图1)。(2)教学环节安排。第一学年进行职业基本素质能力培养,在学校主要进行英语、计算机等职业素质课程和部分职业通用技术知识的学习。第二学年、第三学年安排学生开展模拟训练和实训,并以工学结合的方式在企业顶岗实习,实现教学、实习、就业、工作的紧密结合,提高学生化工专门技能。(3)课程教学实施过程。课程教学实施过程做到“四合一”,即理论与实践融合,仿真模拟与实际操作结合,教室与实训室整合,以及教师与师傅配合等。从而强化学生石油化工生产操作能力,提高学生职业素质,实现企业与学校在石油化工技术技能型人才培养中的深度融合。

三、实施效果分析

第3篇

【关键词】型钢混凝土;石油化工;结构设计

1引言

型钢混凝土结构构件具备诸多优势,比如:受力性能好、截面尺寸小、抗震性能好、自重轻等,在石油化工结构设计中具备很优越的应用价值。在型钢混凝土结构设计过程中,需要明确方法,遵循《型钢混凝土组合结构技术规程》《型钢混凝土结构设计规程》等[1]。此外,还有必要通过构件的实际受力情况,对设计进行优化。总之,由于型钢混凝土具备很好的应用价值,所以对其应用进行探讨意义重大。

2工程实例分析

在石油化工焦化装置中,焦炭塔框架属于核心构筑物,操作重量大,装置支座位置及井架总高度偏高,通常情况下会有焦溜槽以及楼梯间附带。整体结构体系较复杂,设计存在一定难度。以某炼油厂为例,其工程延迟焦化装置焦炭塔框架属于两塔结构,焦炭塔单塔自重达4300kN(430t),塔外径为9690mm,单塔最大高度为41.3m。水焦工况最大操作介质为3040t,满焦工况焦炭量达到1150t。该工程所处场地在地面上10m位置的基本风压为0.5kN/m2,地面粗糙度为B类,抗震设防裂度为7度,工程场地设计基本地震加速度值为0.15g[2]。从框架设计来看属正常,但在结构空间利用方面提出了一些基本建议:(1)尽可能控制主要构件截面,使整体平面布置的需求得到有效满足;(2)确保塔体下方具备充足的空间,能够设置冷焦水过滤器1台和别的附属操作框架;(3)在塔体下方框架位置,有必要对全封闭设备操作房进行合理设置;(4)确保型钢混凝土结构能够合理、科学地应用,进而发挥型钢混凝土结构的作用。

3型钢混凝土结构的选择以及模型的计算

3.1结构选择

对于上述工程的焦炭塔框架设备支承部分来说,为典型的塔型设备基础,即:两塔板式框架联合塔基础,一共有3层,高为27m,纵向连续两跨2.5m×2,横向为单跨12.5m,出焦井架标高为27~117m,属中心支撑钢结构框架。

3.2模型计算

在设计中,所使用的是有限元分析软件STRAT,在利用该软件进行计算过程中需由经验丰富的技术人员操作,以确保计算值的精准性。同时,在焦炭框架选择上,选择高耸组合结构,在建模分析过程中,有必要对下部混凝土框架和上部钢结构的共同作用充分考虑,以此有效模拟结构的具体情况。对于完整的焦炭塔框架模型来说,需具备:①混凝土框架柱;②井架钢结构梁;③混凝土框架梁。此外,利用厚壳单元模拟混凝土顶板,利用薄壳单元模拟设备塔体。

4荷载组合与截面设计

4.1荷载组合分析

根据相关设计规范要求,对焦炭塔框架设计需根据承载能力极限状态最不利的效应组合加以设计。因此,两塔结构设计时的荷载组合为:(1)正常操作工况下:1.2永久荷载+1.0×1.3×(介质荷载+活荷载)+1.4×风荷载;(2)停产之前:1.2永久荷载+1.0×1.3×(介质荷载+活荷载)+1.4×风荷载;(3)停产检修工况下:1.2永久荷载+1.0×1.3×活荷载+1.4×风荷载;(4)地震作用下:1.2×[永久荷载+0.5×(介质荷载+活荷载)]+1.3×水平地震荷载+1.4×0.2×风荷载[3]。总之,需合理分析荷载组合,以此为进一步截面设计以及计算结果的准确性提供保障。

4.2截面设计分析

截面框架柱、框架梁的设计内容如下:1)框架柱设计。在设计初始阶段,如果外在条件全部一致,为了使框架柱截面的尺寸得到有效保证,可选择2种框架柱截面尺寸,通常会选择1个大柱尺寸,即:2500mm×2500mm规模;同时选取1个小柱尺寸,即:1800mm×1800mm规模,根据计算结果,采取对比的方法最终选择适合本工程结构的合理尺寸。在外在条件一致时,大柱和小柱模型需采取分别进行计算的方法。由于会受到框架柱截面尺寸差异的影响,进而使结构刚度存在很大的差异。针对此类情况,需要利用地震组合工况控制好设计结构。从实际经验来看,小柱模型在刚度上偏小,在柔性上较好,基于同样风载或者地震条件作用之下,结构内力偏小,便于为构件截面设计提供有利的条件。2)框架梁设计。对于框架梁来说,因受到工艺设计需求的影响,加之标高相对明确,使得调整的空间偏小。在梁截面上,一般选取为1500mm×2500mm。在对梁截面刚度进行合理增多的条件下,能够使框架柱的反弯点位置得到有效控制,进而使框架梁设计弯矩的要求得到有效满足。基于框架梁内部对H型钢进行设计,能够和框架柱内型钢柱之间组合成为内框架体系,从而使结构的整体性得到有效提升[4]。此外,框架顶板属于设备的支座层,起到承载塔体荷载的作用,在顶板中间部位需设置型钢斜梁,并采取STRAT计算结果提取内力,对厚板配筋进行计算。总结起来,在设置斜梁的条件下,能够使顶板的受力得到有效改善,同时使传力路线得到有效简化。

5结语

本次研究结合实际工程案例,对型钢混凝土在石油化工结构设计中的应用进行了探讨。在了解工程实例的条件下,需选择合理的型钢混凝土结构,并通过模型的计算,进一步分析荷载组合,然后在截面设计过程中,注重框架柱的设计和框架梁的设计。总之,对于型钢混凝土结构来说,对型钢和混凝同受力的特性加以应用的条件下,使混凝土的抗压性能以及型钢的抗弯性能得到有效展现,进而使结构的延展性得到有效提升。此外,在合理应用型钢混凝土结构的条件下,能够提升结构空间的利用效率,进而使实际生产需求得到有效满足。

作者:冉艳华 单位:中海油山东化学工程有限责任公司

【参考文献】

【1】陈燕,何夕平,马乐乐.各国规程对型钢混凝土梁抗弯承载力计算对比分析[J].青岛理工大学学报[J],2016(3):24-29.

【2】孙宇,郑岩,胡勇刚.延迟焦化在炼油工业中的技术优势及进展[J].石化技术与应用,2012(3):260-264.

【3】苏君超.焦炭塔框架阻尼比的取值[J].石油化工设计,2014(4):15-18.

【4】宋桂珍.钢结构防火涂料在石油化工装置中的应用[J].技术与市场,2011(6):175.

【5】靳铁钢.轻型钢结构设计问题探讨[J].城市建设理论研究(电子版),2011(33):11-12.

【6】张金法.门式刚架轻型钢结构设计及施工中一些问题和措施[J].城市建设理论研究(电子版),2011(22):46-47.

【7】唐国昱.型钢混凝土结构在工程设计中的应用[J].价值工程,2012(21):93.

【8】JasimAliAbdullah.钢管混凝土和套管混凝土短柱的抗剪强度和性能分析[J].钢结构,2010(3):156-157.

【9】刘巨保,许蕴博.基于GB50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011(4):96.

【10】李懿.浅析轻钢厂房结构设计要点[J].山西建筑,2013(17):75.