前言:我们精心挑选了数篇优质深基坑施工论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
(一)深井和轻型井点降水
一般采用深井来降水,可以有效降低地下水位,使放坡系数被控制在低于1:1的情况下,而采用轻型井点来降水,可以在降低边坡水位的同时,使土体内的含水量有效减少,最终达到提高基坑编辑抗滑能力和稳定性的目的。因此,在进行深井的设计时,一般深度为14米左右,直径为φ360,本文根据上述建筑工程的基本情况设置有十口深井,可以很好的获得降水效果;在进行轻型井点设计时,采用的是JQ-90型号的轻型井点,在土方挖到深度为四米左右时开始设置,其中支管的型号是φ50、总管的型号为φ100、滤管长为1米,整个轻型井点的深度为6米。
(二)水泥搅拌桩围护和止水
根据建筑工程的施工情况,通常采用水泥搅拌桩来进行四周土体的加固,可以有效防止四周的地下水给基坑造成影响,从而提高边坡的稳定性。在进行水泥搅拌桩的设计时,搅拌桩的直径设置的是φ700,相邻两个桩的距离是20厘米左右,桩的长度是10米左右。同时,沿着桩长的方向,每隔两米在桩的内侧在设置两根桩,可以有效提高桩的抗折损能力,并且,在桩施工完以后必须进行28天的养护,才能保证水泥搅拌桩的质量。
(三)边坡的有效防护
一般土方的边坡采用的是型号为C20的混凝土,浇筑的厚度为80厘米,才能有效避免雨水冲刷清下出现土体下滑情况,并且,基坑的四周还要设置砖砌的挡墙,才能有效防止地面水下流给基坑带来影响,是提高地基承载能力的基础保障。
(一)深层水泥搅拌桩施工工艺
根据深层水泥搅拌桩施工工艺流程可知,在施工开始前,要对地面存在杂草、淤泥等进行及时的清除,保证场地的干净和平整,是提高深层水泥搅拌桩质量的基础措施。一般进行测量定位,是采用经纬仪来进行主轴线定位,以确定各桩的具置,并且,在开始定桩前,要先进行试桩,以对相关参数进行合理的调整,其数量不能低于两根。在施工过程中,加固深度范围内的土体必须均匀搅拌两次以上,才能确保水泥搅拌过程的密实度。因此,根据实际施工情况,确保搅拌机底盘的水平、导向架的竖直,并且,搅拌机的垂直偏差要控制1%以备、桩位的偏差要控制在5厘米以内、成桩的直径和桩长不能比设计值小,才能确保深层水泥搅拌桩与实际施工要求相符。在进行水泥浆的制备时,通常采用的是3.25普通硅酸盐水泥,用量为加固土的15%左右,或者是每平方米的量为250千克。总的来说,深层水泥搅拌桩的质量控制,必须认真落实到每个操作环节,做好相关记录,严格按照施工工艺进行质量评定,并在成长七天后抽查总桩中的50%,对桩头进行浅部开挖,以有效检测搅拌均匀性和直径,避免质量不合格情况出现。
(二)深井降水施工工艺
根据深井降水的施工工艺可知,管井的基本结构为:内部有钢筋混凝土管存在,使用钻井钻孔,其规格为φ800,井管的外径规格为φ360、内径的规格为φ300,在管井上部10米和下部2米的位置使用不透水管、中部2米位置使用透水管,管的外部用尼龙丝布包裹两层,并填加一定量的滤料砂,而井底部分使用的是不透水的钢筋混凝土管,其封底是采用的型号为5的厚铁板进行焊封。一般情况下,管井的位置是:井点管和搅拌桩之间的距离不能比0.8米小,南北方向的井点管每边有三口,东西方向的井点管每边有两口,并且,管井底标高要尽可能比坑基底部深0.8米到1.2米。通常采用的钻机型号为ZB-150,水泵有十五台左右,其功率3千瓦,有五台是备用水泵,消防水管长度为一千米,滤料砂、透水管等都要在孔形成前两天运输到施工现场。在进行测量定位时,采用十字在每个井的中心位置进行定位,并用规格为φ10的钢板制作护筒,总长度为1.8米,将其埋设1.5米,出浆口必须比地面高30厘米,确保护筒处于坑内,以保证护筒的垂直度和中心位置。在成孔以后,要及时进行孔的清洁处理,并采用钢筋混凝土管进行井点管放置,使用扶正木调整井管的垂直度、周边水层的厚度。在完成上述操作后,要及时进行抽水试验,以防止整个施工完成后出现管井抽水情况。
(三)轻型井点降水施工工艺
如图2所示,根据轻型井点降水施工工艺流程可知,上述建筑工程中轻型井点的规格为JQ-90,总管的规格为φ100,支管的规格为φ50,管的长度为6米,滤管的长度为1米,每根支管之间的距离是1米和1.5米之间。在完成冲孔操作后,采用洁净的粗砂将孔壁和井点管之间的空隙灌实,并确保井点管处于砂率的中间位置。同时,管内的水平会不断上升,如果将水注入管中出现水位快速下降情况,则可确定埋管情况与实际要求相符。如果在使用井点的过程中出现管道淤塞、水质浑浊等情况,则必须按照相关标准进行检查或将管拔出重埋。最后,在进行井点系统的拆除时,必须在回填土必须井点顶标高相对等的情况下进行,以保证轻型井点降水的施工质量。另外,轻型井点降水施工完成后,还需按照相关规定进行土方开挖施工,才能有效防止坑基塌陷、漏水等情况出现,从而提高深基坑施工全过程的安全性。
三、结束语
高层建筑物由于其基坑较深,施工的难度和复杂性较大,因此在施工过程中要做好深基坑的支护施工应该注意下面几个问题。
1.1改变传统施工处理的观念目前对于高层建筑物深基坑支护的处理,还没有形成一套准确的计算方法,一些楼层的设计规模也没有在标准上形成统一,因此,建筑项目工程设计人员在进行项目设计时,必须摒弃传统思维观念,因为那些理论或者方法已经不适用于当代的建筑中了。
1.2加大对深基坑支护结构技术进行实证研究为了确保建筑工程项目设计人员所设计的施工方案在建筑项目施工中顺利开展,必须对其科学性及实用准确性进行不断的验证研究,然而,从目前行业发展来看,我国的高层建筑物深基坑支护技术还处在摸索应用阶段,许多施工技术还没形成一套完备的体系,这也是今后需要加强和发展的地方。设计人员为了更好的验证设计方案的有效性,需要亲临施工现场,收集相关收据,对一些基本的地质情况进行勘察探测,掌握基础数据。然后将收集来的数据进行规范化处理,找出问题所在,针对高层建筑物深基坑的实际问题,制定合适的解决应对措施,最后在方案进行论证后在组织施工。
1.3努力提升方法创新控制基坑的形变高层建筑物的深基坑支护施工中,要根据具体的施工状况,选定合适的施工方法。对建筑物的施工现场和周围地面超载情况进行排查研究,通过对比分析确定空间效应以及平面效应发展变化之间的相互关系,并且找出这两者之间的变化对建筑物基坑施工处理带来的安全影响,然后选择合适的基坑支护施工技术,保证建筑物的安全及施工的有序进行。
2.深基坑支护施工技术的主要细节
建筑物不管是低层还是高层,只有把基础打好了才能继续网上发展,才能保证整个建筑物的安全稳定。因此,对建筑物基坑的施工处理要求是非常高的,尤其是一些高层、超高层的建筑深基坑支护技术施工是一项极为重要的工作。
2.1深基坑支护施工中的支护桩支护桩在高层建筑基坑支护施工别重要,其作用主要是承载外力,通常支护桩由两个部分组成,一个是钢筋混凝土做成的护臂,一个是人工挖孔桩。在具体的基坑支护施工中,必须控制钢筋笼、成孔和混凝土的质量,如果质量把关不严,整个工程项目的安全稳定必将受到影响,也会对建设项目的进度产生阻碍作用。
2.2建筑物基坑土方的开挖建筑物基坑土方的开挖也是需要主要的地方,挖出来的土方要及时迅速的运离施工现场,避免这些庞大的土方量给施工带来影响,并且开挖过程也不要影响周围建筑和环境。如若遇到一些紧急情况,立即停工,安排专业人员对问题进行核查,待问题有效得到解决后继续组织施工。
2.3建筑物基坑排桩施工在基坑处理中,排桩主要是按队列式整齐的布置的桩型支护结构,排桩配合环形支护,其基坑支护效果更加的明显。在这种桩体进行施工中,可以用挖孔桩或工字钢桩一起其他的桩体结构进行布置,然后将这些建筑物基坑支护结构排布成一个环形,从而加强支护结构的整体稳定性和安全性。
2.4建筑物基坑支护施工监测在建筑项目施工中,不管施工所处进度,都要进行严格的监视。尤其在深基坑支护施工中,要进行全面监测,保证正常的施工进展,发现问题及时有效解决。
3.结语
目前我国的高层建筑深基坑支护施工工艺的发展还处于初级阶段,技术方面还存在着较多亟待改进的地方,水平也不算高,所以这就需要相关的施工和设计人员在工作中进行综合考量,以提高高层建筑筑深基坑支护施工工艺的水平,为建筑质量的提高打下坚实的基础。
1.1加强对工程设计研究性试验的重视
大量的实验研究对于高层建筑的施工方案成型有着重要的意义,它能够为设计施工方案的实用性和准确性提供必要的实验数据支持,以供相关的工程设计人员进行参考。但是从当前情况来看,我国高层建筑深基坑支护施工技术的工程设计研究性试验还处于初级阶段,并没有在此方面形成一个完整的系统,并且相关方面的监督管理措施也未被完善地建立起来。如在高层建筑深基坑支护施工方案设计之前,相关的施工设计人员需要到现场对诸如地下水位、土壤密度、地质构造等数据进行充分的收集,然后在此实地考察分析的基础上对施工方案的设计和相关的工程设计研究性试验进行指导,才能获得可靠准确的数据。但是现阶段的相关施工设计人员并没有对数据进行足够的收集,数据的匮乏使得工程设计研究性试验的科学分析很难获得可靠的结果,所以就很在施工方案的设计和施工阶段为其作出良好的数据支撑。
1.2运用现代化的设计理念
我国高层建筑深基坑支护施工方案是设计中有很多地方还需要国家进一步颁布相关的标准予以明确,如计算方法的不同一就是其中的一个例子,与此同时在设计规格方面的模糊也是我国高层建筑深基坑支护施工过程中长出问题的原因之一。依据上述论述,现阶段为了促进高层建筑深基坑支护技术的高校利用,相关设计人员在理念方面要重视对现念的把握,在促进计算方法和设计规格统一的方面做出努力,这种努力不仅还有利于检测的进行,而且对于工程的现实需要也能做到更加契合,从而保证设计的适用性和支护施工的质量。
1.3重视对设计中变形的控制
高层建筑深基坑支护的施工是在科学合理的施工方案指导下进行的,因此在相关的施工方案设计中一定要重视对施工现场的考查和数据的分析,以在设计高层建筑深基坑支护施工设计阶段就对施工过程中可能出现的变形问题做到控制,如在考察时要重视对施工地面附近的超载现象,空间与平面效应之间的变化关系等作出重点分析,将其考虑到施工方案设计的过程中去,以保证此后施工的安全性和施工效果。
2高层建筑深基坑支护施工要点工艺的分析
随着经济和社会的不断发展,高层建筑也开始不断地增加。并且随着我国城市化进程的不断加快,未来出现的高层建筑会更多,而在这种趋势作用下,社会对高层建筑深基坑支护施工工艺的要求也会越来越高,下面我们就对高层建筑深基坑支护施工工艺重点技术做一番分析
2.1支护桩施工分析
承载外力是支护桩的主要作用,其在深基坑的支护中也占有重要的地位。其施工过程重要是由人工挖孔桩和钢筋混凝土护壁两部分组成,前者是主要为满足支护要求而由施工人员自己施工。如以灌注桩为例进行说明,在这个过程中吊桶的方法多是被相关施工人员用来完成挖掘人物的主要方法,任务结束之后,监控此后诸如钢筋笼环节的安装等各个施工环节的质量就成为了主要的任务,在这个施工的过程中,施工人员一定要加强各个环节的重视,因为深基坑支护作用的水平很可能直接受到支护桩中任何一个环节的影响,甚至在某些严重的情况下还会造成较严重的事故。
2.2土方开挖分析
在深基坑支护的过程中这是施工的重点部分,通俗地说就是将基坑中的土完全挖出的过程。在施工的过程中施工人员要注意一下几点:第一,在土方开挖的过程中要将挖出的土全部清理出施工场地,避免对后续施工产生影响;第二,在施工的过程中有可能会出现地下电缆或者其他异物,这时候相关的施工人员要立即上报,带上级部门作出妥善全面的处理之后再开始施工。
2.3排桩加环撑分析
支护桩依据一定形式的排列是高层建筑深基坑支护施工过程中需要关注的重点之一,这种排列能够形成基坑支护结构,而且在其实际应用的过程中要搭配环形支护以形成最终的支护结构。工字钢桩、挖孔桩和钻孔灌注桩是相关的施工人员在施工过程中可以选择使用的主要方式,但是不管施工人员最终选择了那个钢桩,排列规则在其中的应用都是必不可少的,这样高层建筑地下建设施工的科学合理才能得到一定的保证。最终的支护结构在排桩加环撑的技术处理之后就会成为一个圆形的结构,这种技术手段能够为支护结构的安全稳定做出重要的贡献。
2.4基坑支护监测分析
相关人员对高层建筑深基坑支护施工的实时监测能够为施工单位提供相关施工的实时状况,对于重点的部分要给予更多的关注,如支护桩的强度性能、变形状况和其位移状况等,检测的频率一般而言为2~3天一次,如果发现施工中出现了问题,就要采取应急措施,及时地解决,同时在这段时间内还要提高检测的频率,以保证施工单位对相关状况的及时掌握。
2.5环撑的拆除以及换撑分析
(1)建筑工程深基坑支护施工缺乏规划模式
建筑工程的深基坑支护施工实行分包的设计和管理方式,建筑工程的业主将深基坑的施工工程分包给专业的岩土公司,随之纳入总承包单位进行整体的管理和协调。由专业公司到总承包单位模式实现了直接的分包方式,然而容易出现施工工程的管理和监督问题,由总承包单位分包到专业公司的模式难以保证相应施工工程的质量,为建筑工程的使用带来了安全的隐患。
(2)建筑工程投标不规范
建筑市场上,相应的专业公司大致分为两类,包括较大的岩土施工地质勘探公司,还有一类是个人的岩土公司。近年来,相关的建筑业主为加快施工速度,致使建筑工程的深基坑支护设计和施工都存在一定的不规范和不合理。从而造成了建筑工程相应深基坑设计和施工的不合理,给相应的建筑工程带来了安全和管理的隐患。建筑市场上,相应的建筑承包商为抢占建筑承包市场无论是否具有建筑工程的深基坑设计和施工资质的公司均参与了建筑工程的投标,那些不具有建筑设计资质的公司进入投标将造成建筑工程的一系列隐患,给相应的工程建设带来一系列的问题。
(3)深基坑的边坡水平位移大
建筑工程的深基坑边坡水平位移大,甚至超过了四厘米。并且在相应的监测过程中发现深基坑的水平位移仍在增加,对建筑工程项目的顺利施工带来了阻碍。相应的深基坑施工单位应及时采取有效的措施,停止支护主体的施工,并对相应的建筑工程的深基坑支护设计进行重新评定和稳定性分析和处理,尽量在最短的时间内实现问题的解决和有效处理。
(4)建筑工程的深基坑边坡坍塌
建筑工程的深基坑边坡坍塌在一般在施工阶段和支护施工结束不久阶段产生。在很大程度上由于相应的深基坑的设计和施工单位未建立合理的设计体系和严格的施工管理程序,从而造成了相应建筑工程的坍塌。
(5)附近建筑物变形
在城市建设中,很多基坑紧邻建筑物,处理稍有不当,附近建筑物就极易变形。一般来说,建筑物变形都是其地基沉降引起的。建筑物出现较大变形后,不仅危及楼上的居民或工作人员的安全,而且也对在施的工程造成威胁,使得工程难以继续进行下去。
二加强工程施工管理
(1)专项施工方案编制
深基坑工程施工单位应当根据经审查合格的设计文件,结合工程实际编制专项施工方案。专项施工方案除应当具备常规的内容外,还应当包括执行规范、规程、设计中所规定的施工程序的技术措施;土方开挖及运输方案;控制地面堆载、地表水、地下水的措施;对邻近建(构)筑物、道路,供电及市政管线的保护措施、监控措施;应急抢险措施等内容。
(2)专项施工方案审批
专项施工方案应当由施工单位技术负责人审批,总监理工程师审查,建设单位组织不少于5人的专家组进行评审并报建设工程质量安全监督机构审查备案。经批准的专项施工方案,任何单位和个人不得擅自修改、变更。施工企业如发现专项施工方案存在施工安全的问题,应及时会同勘察、设计、监理、监测单位研究处理。确需对设计文件进行修改、变更的,应重新审查变更。
(3)工程实施
建设单位或者工程总承包单位、监理单位应当加强对深基坑工程施工质量和安全的管理,检查、督促基坑施工单位做好深基坑工程施工的质量和安全工作,严禁在不具备安全生产条件下,强令施工单位违章作业、盲目施工。建筑质量安全监督管理部门应当制定定期和不定期检查计划,加强监督管理。工程质量安全监督机构要将其纳入工程质量安全监管程序,加大对深基坑和边坡支护工程质量的监督管理力度。深基坑坑顶周边,在基坑深度2倍距离范围内,严禁设置塔吊等大型设备和搭设职工宿舍。在深基坑周边上述距离范围内,确需搭设办公用房、堆放料具等,必须经深基坑工程设计单位验算设计,并出具书面同意意见后方可实施;深基坑工程施工单位应对基坑进行特殊加固处理,加固方案必须经原专家组评审。
(4)应急处理
施工单位应制定防范事故的应急预案。发生深基坑工程质量安全事故或严重威胁周边环境安全时,建设、施工、监理单位必须迅速采取措施,控制事态发展,并立即按有关规定向质量安全监督站报告,严禁拖延或隐瞒不报。
(5)施工期间安全监测
监测单位应具有相应的监测资质。监测单位应当根据勘察报告、设计文件要求、工程和水文地质条件、基坑安全等级、基坑周边环境和专项施工方案等,制定科学合理、安全可靠的监测方案。深基坑和边坡支护施工各责任单位要24小时设专人监测基坑和边坡安全情况,并做好监测记录。监测采集数据已达报警界限时,应当立即采取有效措施,防止险情扩大,并迅速报建设工程质量安全监督机构。
(6)施工单位在深基坑支护施工中必须加强
施工安全技术管理,做好技术交底,加强施工现场安全生产文明施工管理,及时了解和分析监测信息。对可能出现的险情,制订相应的应急救援预案和处理措施,根据工程实际情况配备应急抢险器材和人员,确保深基坑工程的施工质量、结构安全和安全生产。
(7)监理单位必须加强对深基坑工程全过程的监理
关键词:地铁,深基坑,施工,地质风险
地铁工程具有几大显著特点,即周边环境复杂,各种建构筑物、地下管线多,且对施工变形控制要求高;工程地质与水文地质复杂,不确定因素多;结构形式较多,施工方法交叉变换多,施工难度大;施工工期压力较大等,这些特点都集中表现为工程的高风险性。因此,通过主动的、系统化的风险分解、分类,识别工程的致险因子、风险事件和后果对地铁及地下工程建设风险源进行辨识是具有重大意义的。根据地铁土建工程的特点,安全风险的分解按照工程所处的地质条件、周边环境、工程实施等的各个阶段进行分解。从自然环境、工程条件、技术等方面分析拟建工程的特点及相应的潜在风险。
本文以广州地铁五号线建设风险管理的实践,并以基坑开挖为重点,分析地铁基坑开挖地质风险分类。
1)在软土地层、淤泥质土体进行基坑开挖施工引起地面沉陷的风险。
明挖基坑施工沿线存在很大厚度具有低强度和高压缩性的软土、淤泥质土体时,很难控制好地面沉降及邻近地下管线、构筑物的位移,容易引起一定的地面沉陷,给地面建筑、构筑物、地下管线带来危害。因此更会导致诸多连环性质的工程灾害,如:管线爆裂渗水进而导致暗挖段土体力学参数急剧下降,承载能力大幅下降和变形急剧扩大,如此恶性循环后必将出现灾难性后果。
2)明挖时,容易因失水造成地面塌陷。
一般在基坑开挖时,需要进行坑内降水,这需要防止土体失水引起的地面塌陷风险。砂土地区应该防止因降水引起水土流失导致的地面塌陷。
如果地层失水严重,上伏软土则会引起大幅沉降,特别是沿线地表均存在相当厚度的软土或淤泥土,明挖施工时浅层地下水可能透过岩石层的裂隙进行渗漏,如果渗水过多则会引起地表沉降过大。
3)粉细砂层容易发生液化、流砂、涌砂现象,给明挖造成危险。工作面前方遭遇流砂或发生管涌,这种现象的发生对于基坑施工都是灾难性的后果。
4)花岗岩各风化带遇水软化、崩解,给施工带来很大风险。结构设计过程中,一般不会将花岗岩各风化带遇水软化、崩解作为荷载验算工况。因此,如果施工过程中发生岩石崩解,将威胁明挖施工的安全。
5)岩层风化带的岩面起伏问题对车站差异沉降的影响。沿线地质中,花岗岩各风化带的岩面起伏问题相当严重并且普遍。一般而言,根据现行GB50157-2003地铁设计规范设计方都会在车站主体结构方向设置1道~3道变形缝,间距约50m。而岩面的起伏造成车站底板分别坐落于不同地层,甚至造成有的底板坐落于砂层、软土层,有的底板坐落于岩层。这种巨大的差异会造成:同一埋深范围内土体强度和刚度不一,使得主体结构纵向沉降差异显著增大,当变形缝两侧主体结构的差异沉降超过轨道允许的最大沉降差时,会严重影响地铁车辆的运行。
6)地下结构在岩面起伏的地质中地震响应的风险。
上软下硬、岩面起伏的地质使得盾构隧道的地震响应比较复杂,尤其是盾构属于地下超长结构,其地震响应更加复杂,不仅受到纵向地震波的影响,还受到折射波的影响,并且随地震波的入射角度不同而存在不同的地震响应给工程带来较大设计和运营风险。
7)断层破碎带中进行地下工程施工的风险。
在各断裂的断层破碎带之中,基坑开挖施工容易受到地质断裂带中沿岩石裂隙面滑动的滑动力不利影响,这种滑动也会带来很大的风险。明挖基坑在计算基坑侧壁滑裂面时,应考虑本断裂面的不利工况。施工过程中对围岩的破坏程度、工序衔接的快慢、施工技术措施是否得当等,均有很大的关系。
8)断层活动的风险(包括抗震和地震响应等方面)。
断层活动对广州地区第四系覆盖区的全新统可液化砂层和可能发生震陷的淤泥层有着重要影响,因而也往往容易沿这些断层造成地基失效。因此,在工程建设中应注意抗震问题。
广州地区断层的活动性较弱,现代跨断层的形变观测表明其活动速率较小,不可能孕发强震,对地面建筑破坏较轻,但不排除在局部地段或地区,尤其是砂层或淤泥层较厚的珠江沿岸及其西部一带,发生砂土液化和淤泥震陷等震害的可能性。9)地下水腐蚀地下结构的风险。
沿线地下水对混凝土结构工程无腐蚀性,但对结构中的钢筋具有弱腐蚀性。此种腐蚀性会随着时间的增长,加速结构的老化过程。特别是地铁结构一般均处于高应力状态,钢筋受到腐蚀会影响结构的安全性。
10)隐伏溶沟、溶槽、地质漏斗、风化深槽等的风险。
在断裂发生地带多隐伏溶沟、溶槽、漏斗等,这种地质“空洞”,改变了地质应力分布状态,使得土体经开挖后处于松散状态而发生坍塌。
11)爆破震动引起砂层和淤泥质土层震陷的风险。
由于各站站址均下卧岩石层,施工时使用微型爆破或钻孔设备时,施工机具的频繁振动或爆破震动传至砂层或上层淤泥质土层时,易产生液化、涌砂现象。
12)缺乏地质超前预报带来的风险。
广州地质条件相对复杂,突发性地质事件很多,缺乏地质超前预报易带来很多风险。岩溶、断裂、隐伏风化深槽等地质勘探、预报局限性也会带来风险。
广州地区存在岩溶、断裂、隐伏风化深槽等大量的不良地质,这些均需要做大量的地质勘探工作。根据五号线的勘探实践经验,岩溶地质勘探很难反映溶洞的分布,这给施工带来很大的困难和风险。
13)明挖基坑穿越上软下硬复合地层(土、石交界面)的风险。
明挖基坑大多穿越上软下硬复合地层(土、石交界面),因而此类问题具有很大的普遍性。此时,软土地层应力逐渐增大,而硬岩、风化岩地层则突然减小。此类基坑的支撑设计阶段也应考虑到这种变化。
14)流砂的风险。
广州部分地区砂层较厚,基坑遭遇流砂危害的可能性也较大。虽然围护结构都设置了桩间止水措施,但难免存在空隙渗漏流砂。
15)硬岩层内成桩困难的风险。
广州地铁五号线沿线都存在很厚的硬岩层,因而成桩困难。值得一提的是以上所述工程中的各项风险因素往往相互作用,比如地面塌陷引起地下管线爆裂、地下基础的严重倾斜;地下管线爆裂、地下基础的严重倾斜更加剧了地面塌陷,如此往复应该注意避免此类风险的相互作用现象,并从源头上控制风险。综上所述,作为建设单位、监理单位、施工单位应对地铁深基坑工程中地质风险加以了解,对照审核施工方案、施工组织及安全措施;分析和评估各车站、区间施工中可能发生的安全风险;确定现场监测的对象、项目内容、范围以及监测频率,并实施监测;审查施工降水、地层注浆、临时工程设计和重要管线及建筑物的保护方案;参与施工中关键技术措施可行性和有效性的审定,并对相应的安全风险作出评价;综合分析监测数据和地质状况,对施工影响区内的环境安全状态作出及时、可靠的评估,及时进行预警和报警,从而提高深基坑开挖的安全管理水平,减少由地质风险导致的事故。
关键词:地铁,深基坑,施工,地质风险
地铁工程具有几大显著特点,即周边环境复杂,各种建构筑物、地下管线多,且对施工变形控制要求高;工程地质与水文地质复杂,不确定因素多;结构形式较多,施工方法交叉变换多,施工难度大;施工工期压力较大等,这些特点都集中表现为工程的高风险性。因此,通过主动的、系统化的风险分解、分类,识别工程的致险因子、风险事件和后果对地铁及地下工程建设风险源进行辨识是具有重大意义的。根据地铁土建工程的特点,安全风险的分解按照工程所处的地质条件、周边环境、工程实施等的各个阶段进行分解。从自然环境、工程条件、技术等方面分析拟建工程的特点及相应的潜在风险。
本文以广州地铁五号线建设风险管理的实践,并以基坑开挖为重点,分析地铁基坑开挖地质风险分类。
1)在软土地层、淤泥质土体进行基坑开挖施工引起地面沉陷的风险。
明挖基坑施工沿线存在很大厚度具有低强度和高压缩性的软土、淤泥质土体时,很难控制好地面沉降及邻近地下管线、构筑物的位移,容易引起一定的地面沉陷,给地面建筑、构筑物、地下管线带来危害。因此更会导致诸多连环性质的工程灾害,如:管线爆裂渗水进而导致暗挖段土体力学参数急剧下降,承载能力大幅下降和变形急剧扩大,如此恶性循环后必将出现灾难性后果。
2)明挖时,容易因失水造成地面塌陷。
一般在基坑开挖时,需要进行坑内降水,这需要防止土体失水引起的地面塌陷风险。砂土地区应该防止因降水引起水土流失导致的地面塌陷。
如果地层失水严重,上伏软土则会引起大幅沉降,特别是沿线地表均存在相当厚度的软土或淤泥土,明挖施工时浅层地下水可能透过岩石层的裂隙进行渗漏,如果渗水过多则会引起地表沉降过大。
3)粉细砂层容易发生液化、流砂、涌砂现象,给明挖造成危险。工作面前方遭遇流砂或发生管涌,这种现象的发生对于基坑施工都是灾难性的后果。
4)花岗岩各风化带遇水软化、崩解,给施工带来很大风险。结构设计过程中,一般不会将花岗岩各风化带遇水软化、崩解作为荷载验算工况。因此,如果施工过程中发生岩石崩解,将威胁明挖施工的安全。
5)岩层风化带的岩面起伏问题对车站差异沉降的影响。沿线地质中,花岗岩各风化带的岩面起伏问题相当严重并且普遍。一般而言,根据现行GB50157-2003地铁设计规范设计方都会在车站主体结构方向设置1道~3道变形缝,间距约50m。而岩面的起伏造成车站底板分别坐落于不同地层,甚至造成有的底板坐落于砂层、软土层,有的底板坐落于岩层。这种巨大的差异会造成:同一埋深范围内土体强度和刚度不一,使得主体结构纵向沉降差异显著增大,当变形缝两侧主体结构的差异沉降超过轨道允许的最大沉降差时,会严重影响地铁车辆的运行。
6)地下结构在岩面起伏的地质中地震响应的风险。
上软下硬、岩面起伏的地质使得盾构隧道的地震响应比较复杂,尤其是盾构属于地下超长结构,其地震响应更加复杂,不仅受到纵向地震波的影响,还受到折射波的影响,并且随地震波的入射角度不同而存在不同的地震响应给工程带来较大设计和运营风险。
7)断层破碎带中进行地下工程施工的风险。
在各断裂的断层破碎带之中,基坑开挖施工容易受到地质断裂带中沿岩石裂隙面滑动的滑动力不利影响,这种滑动也会带来很大的风险。明挖基坑在计算基坑侧壁滑裂面时,应考虑本断裂面的不利工况。施工过程中对围岩的破坏程度、工序衔接的快慢、施工技术措施是否得当等,均有很大的关系。
8)断层活动的风险(包括抗震和地震响应等方面)。
断层活动对广州地区第四系覆盖区的全新统可液化砂层和可能发生震陷的淤泥层有着重要影响,因而也往往容易沿这些断层造成地基失效。因此,在工程建设中应注意抗震问题。
广州地区断层的活动性较弱,现代跨断层的形变观测表明其活动速率较小,不可能孕发强震,对地面建筑破坏较轻,但不排除在局部地段或地区,尤其是砂层或淤泥层较厚的珠江沿岸及其西部一带,发生砂土液化和淤泥震陷等震害的可能性。
9)地下水腐蚀地下结构的风险。
沿线地下水对混凝土结构工程无腐蚀性,但对结构中的钢筋具有弱腐蚀性。此种腐蚀性会随着时间的增长,加速结构的老化过程。特别是地铁结构一般均处于高应力状态,钢筋受到腐蚀会影响结构的安全性。
10)隐伏溶沟、溶槽、地质漏斗、风化深槽等的风险。
在断裂发生地带多隐伏溶沟、溶槽、漏斗等,这种地质“空洞”,改变了地质应力分布状态,使得土体经开挖后处于松散状态而发生坍塌。
11)爆破震动引起砂层和淤泥质土层震陷的风险。
由于各站站址均下卧岩石层,施工时使用微型爆破或钻孔设备时,施工机具的频繁振动或爆破震动传至砂层或上层淤泥质土层时,易产生液化、涌砂现象。
12)缺乏地质超前预报带来的风险。
广州地质条件相对复杂,突发性地质事件很多,缺乏地质超前预报易带来很多风险。岩溶、断裂、隐伏风化深槽等地质勘探、预报局限性也会带来风险。
广州地区存在岩溶、断裂、隐伏风化深槽等大量的不良地质,这些均需要做大量的地质勘探工作。根据五号线的勘探实践经验,岩溶地质勘探很难反映溶洞的分布,这给施工带来很大的困难和风险。
13)明挖基坑穿越上软下硬复合地层(土、石交界面)的风险。
明挖基坑大多穿越上软下硬复合地层(土、石交界面),因而此类问题具有很大的普遍性。此时,软土地层应力逐渐增大,而硬岩、风化岩地层则突然减小。此类基坑的支撑设计阶段也应考虑到这种变化。
14)流砂的风险。
广州部分地区砂层较厚,基坑遭遇流砂危害的可能性也较大。虽然围护结构都设置了桩间止水措施,但难免存在空隙渗漏流砂。
15)硬岩层内成桩困难的风险。
广州地铁五号线沿线都存在很厚的硬岩层,因而成桩困难。值得一提的是以上所述工程中的各项风险因素往往相互作用,比如地面塌陷引起地下管线爆裂、地下基础的严重倾斜;地下管线爆裂、地下基础的严重倾斜更加剧了地面塌陷,如此往复应该注意避免此类风险的相互作用现象,并从源头上控制风险。综上所述,作为建设单位、监理单位、施工单位应对地铁深基坑工程中地质风险加以了解,对照审核施工方案、施工组织及安全措施;分析和评估各车站、区间施工中可能发生的安全风险;确定现场监测的对象、项目内容、范围以及监测频率,并实施监测;审查施工降水、地层注浆、临时工程设计和重要管线及建筑物的保护方案;参与施工中关键技术措施可行性和有效性的审定,并对相应的安全风险作出评价;综合分析监测数据和地质状况,对施工影响区内的环境安全状态作出及时、可靠的评估,及时进行预警和报警,从而提高深基坑开挖的安全管理水平,减少由地质风险导致的事故。
关键词: 深基坑支护;设计与施工;管理
中图分类号:S611 文献标识码:A 文章编号:
0 引言
本文分析了建筑工程中深基坑支护设计及施工中目前存在的主要问题,并提出相应的处理对策,以期在今后的工程实践中不断总结和提高技术水平,为发展深基坑施工的理论和实践做出贡献。
1 深基坑支护的设计
基坑支护体设计要根据实际施工需求,结合基坑侧壁安全等级及重要性系数科学严谨的制定设计方案,应充分做到以下几点:
1.1深基坑支护结构的设计要区别其他设计领域,要改变传统观念,具体条件具体分析。要充分利用新技术、新理念,以达到经济、合理、安全可靠的目的。
1.2重视支护结构理论和材料的试验研究,实践是检验真理的唯一标准。在深基坑支护结构的实验方面,我国与发达国家有较大距离。不过,由于我国经济飞速发展,大量高层建筑拔地而起,积累了大量的施工数据,但缺少科学的测试数据,无法形成理论,我们以后一定要重视起来,很好的利用施工监测反馈的动态信息指引设计体系。
1.3勇于创新,设计支护结构时,应开拓思路,多进行新的尝试,寻求新的设计思路,探索更好的计算方法。
基坑支护是一种特殊的结构方式,具有很多的功能。不同的支护结构适应于不同的水文地质条件,因此,要根据具体问题,具体分析,从而选择经济、适用的支护结构。
2 深基坑支护施工中存在的问题
现今,深基坑支护结构的设计理论虽然有了很大发展,但是在实际施工中仍然存在许多不足的地方,主要表现为如下几个方面。
2.1 先挖后撑
在深基坑施工中有些施工单位为了抢进度,图局部效益,开挖顺序混乱,边进行支护设计、边进行挖土。等支护方案出来了,基坑已经挖到底了,造成了“先挖后撑”违反土方开挖顺序原则。
2.2边坡不达标
在深基坑施工中经常存在挖多或挖少的现象,这是由于施工管理不到位,以及机械操作手的操作水平等因素的影响。深基坑支护工程施工中较为常见的不足是:机械开挖后,边坡表面的不规则,不平整和不顺直。
2.3边坡水平位移较大
在深基坑施工中,曾有某工程基础施工刚刚做完底板,基坑位移就达到 4cm以上,并且经监测,水平位移还在继续加大。在此情况下,施工单位只能停止地下工程施工,并立即召集基坑支护设计和施工单位专家对基坑重新进行稳定性分析,提出处理措施。
2.4附近建筑物变形
在城市建设中,很多基坑紧邻其他建筑物,稍有处理不当,极易造成附近建筑物地基沉降,引起建筑物变形。附近建筑物地基出现较大变形后,不仅危及该建筑物和居住人员的安全,也给在建的工程造成威胁,使得工程难以继续进行下去。比如:上海13层住宅楼整体倒塌事件,就是由于此楼房前方开挖基坑,加之堆积了几千吨的土方,导致此楼房产生10厘米左右的位移,对PHC管桩产生很大的偏心弯矩,最终破坏桩基,引起楼房整体倒置。
2.5环保措施不到位
基坑施工时,应当合理的选择施工机械和基坑支护体,尽量减少噪音、震动干扰和施工环境污染等情况,以使附近单位和居民的正常工作,生活环境不受噪音、震动干扰。要做到文明施工,安全生产,减少安全事故。
3 深基坑支护实施策略
3.1 转变传统深基坑支护工程设计理念
现如今我国在深基坑支护技术上已经积累很多实践经验,初步摸索出岩土变化支护结构实际受力的规律,为建立健全深基坑支护结构设计的新理论和新方法打下了良好的基础。但目前我国还没有统一的支护结构设计的相关规范和标准。土压力分布还按库伦或朗肯理论确定,支护桩仍用“等值梁法”进行计算。这些陈旧的计算理论所计算出的结果与深基坑支护结构的实际受力悬殊较大,既不安全也不经济。因此,深基坑支护结构的施工工程设计应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。
3.2 专项施工方案的编制与下发。
在基坑支护施工时,应编制专项施工方案。考虑到上报、审阅与返回周期,专项施工方案应在施工前几天编制,并及时上报监理。施工单位在接到正式批复的施工方案前不得进行施工。在当前的基坑支护施工中,施工方案未批复前就开始施工的情况时有发生,这作为深基坑支护规范化施工是应当避免的。
3.3重视变形观测,并注意及时补救
深基坑支护结构变形观测的内容包括:基坑边坡的变形观测、及周围建筑物及地下管线变形观测等。通过监测数据可以及时分析并及时了解土方开挖及支护设计在实际应用中的情况,分析其存在的偏差以便及时了解基坑土体变形状况和土方开挖影响的沉降情况还有地下管线的变形情况等。对设计中存在的偏差,在下部施工中及时校正设计参数,对已施工的部位采取恰当的补救和控制措施,为此,要求现场变形观测的数据必须准确、可靠、及时,要求变形观测人员严格按照预定设计方案精心测量、认真负责,保证观测质量。如果在实际测量中确实发现异常情况,就需要即时研究采取措施以防止其恶化。研究和应用已有的基坑工程行业的和地区性规范以及当地的工程经验。对于重大复杂的基坑工程目前国内采用专家论证的形式,对保证工程安全、降低造价是有效和现实的一种方法。
3.4 全程控制基坑支护的施工质量
深基坑支护施工重在过程控制,一旦施工过程控制环节出现问题,事后纠正和补救都会比较困难。因此我们必须进行严格的施工过程控制管理,确保施工质量,严格按设计方案组织施工。另外,地下水控制也属于基坑支护的一部分,必须合理运用明排、降水、截水和回灌等形式控制地下水,保证基础施工安全。施工单位在施工过程中不得随意改变锚杆位置、长度、型号、数量,钢筋网间距,加强筋范围,放坡系数等。设计方案变更时必须重新经专家评审。基坑支护施工坚持分层分段开挖和分层分段支护的施工原则进行施工。土方开挖的顺序和具体开挖的方法必须与设计的工作情况相一致,并遵循“开槽支撑,先撑后挖,分层开挖,严禁超挖”的原则,减少开挖过程中土体的扰动范围,缩短基坑开挖卸荷后无支撑的暴露时间,对称开挖,均衡开挖,合理利用土体自身在开挖过程中控制位移的能力。
4 结束语
对于深基坑支护设计和施工必须加强管理,实际施工管理中要求决策者需要掌握本地区或类似条件下已有的成功的经验和失败的教训,根据特定的工程要求和条件进行综合考虑,需从以下几方面着手解决。
4.1 设计应全面考虑深基坑支护的设计依据和条件,这是做好深基坑支护工程的前提条件。
4.2随着人们环保意识的加强,支护体施工时,要尽量减少支护工程施工产生的环境污染。
4.3 基坑支护施工是工程得以安全、顺利进行的保证,应加强施工过程控制。
关键词: 深基坑; 支护施工; 问题
0 引言
随着时代的发展和人民的生活水平的提高,建筑物的重要性和安全等级越来越高,且深基坑的开挖深度也越来越大,合理的基坑支护技术是保障建筑物安全施工的关键,为了确保建筑物的稳定性,建筑基础必须要满足地下埋深嵌固的规范要求。建筑结构主体越高,其埋置深度也就越深,对基坑工程施工要求也就越高,随之存在问题也越来越多,这给建筑施工带来了很大的困难。
1 深基坑支护施工中存在的问题
现今深基坑支护结构的设计理论虽然有了很大发展,但是在实际施工中仍然存在许多不足的地方,主要表现为如下几个方面。
1.1 边坡修理不达标
在深基坑施工中经常存在挖多或挖少的现象,这都是由于施工管理人员管理的不到位以及机械操作手的操作水平等多种因素的影响,使得机械开挖后的边坡表面的平整度和顺直度不规则,而人工修理时又由于条件的限制不可能作深度挖掘,故经常性的会出现挡土支付后出现超挖和欠挖现象。这是深基坑支护工程施工中较为常见的不足之处。
1.2 施工过程与施工设计的差别大
在深基坑中需要支护施工时,会用到深层搅拌桩,但其水泥掺量会不够,这就影响水泥土的支护强度,进而使得水泥土发生裂缝,另外,在实际施工中,偷工减料的现象也时常发生,深基坑挖土设计中常常对挖土程序有所要求来减少支护变形,并进行图纸交底,而实际施工中往往不管这些框框,抢进度,图局部效益,这往往就会造成偷工减料现象的发生。深基坑开挖是一个空间问题。传统的深基坑支护结构的设计是按平面应变问题处理的。在未能进行空间问题处理之前而需按平面应变假设设计时,支护结构的构造要适当调整,以适应开挖空间效应的要求。这点在设计与实际施工相差较大,也需要引起高度的重视。
1.3 土层开挖和边坡支护不配套
当土方开挖技术含量较低时,组织管理也相对容易。而挡土支护的技术含量较高,施工组织和管理都比土方开挖复杂。所以在实际的施工过程中,大型的工程一般都是由专业的施工队伍来完成的,而且绝大部分都是两个平行的合同。这样,在施工过程中协调管理的难度大,土方施工单位抢进度,拖延工期,开挖顺序较乱,特别是雨天期间施工,甚至不顾挡土支护施工所需要工作面,留给支护施工的操作面几乎是无法操作,时间上也无法去完成支护工作,对属于岩土工程的地下施工项目,资质限制不严格,基坑支护工程转手承包较为普遍,一些施工单位不具备技术条件,为了追求利润而随意修改工程设计,降低安全度。现场管理混乱,以致出现险情,未做到信息化施工和动态化管理。这也是深基坑支护施工中常见的问题之一。
2 深基坑支护实施策略
2.1 转变传统深基坑支护工程设计理念
现如今我国在深基坑支护技术上已经积累很多实践经验,初步摸索出岩土变化支护结构实际受力的规律,为建立健全深基坑支护结构设计的新理论和新方法打下了良好的基础。但对于岩土深基坑支护结构的实际设计和施工方法仍处于摸索和探讨阶段,而且,目前我国还没有统一的支护结构设计的相关规范和标准。土压力分布还按库伦或朗肯理论确定,支护桩仍用“等值梁法”进行计算。这些陈旧的计算理论所计算出的结果与深基坑支护结构的实际受力悬殊较大,既不安全也不经济。因此,深基坑支护结构的施工工程设计不应该再采用以往传统的“结构荷载法”,而应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。
关键词: 深基坑; 支护施工; 问题
0 引言
随着时代的发展和人民的生活水平的提高,建筑物的重要性和安全等级越来越高,且深基坑的开挖深度也越来越大,合理的基坑支护技术是保障建筑物安全施工的关键,为了确保建筑物的稳定性,建筑基础必须要满足地下埋深嵌固的规范要求。建筑结构主体越高,其埋置深度也就越深,对基坑工程施工要求也就越高,随之存在问题也越来越多,这给建筑施工带来了很大的困难。
1 深基坑支护施工中存在的问题
现今深基坑支护结构的设计理论虽然有了很大发展,但是在实际施工中仍然存在许多不足的地方,主要表现为如下几个方面。
1.1 边坡修理不达标
在深基坑施工中经常存在挖多或挖少的现象,这都是由于施工管理人员管理的不到位以及机械操作手的操作水平等多种因素的影响,使得机械开挖后的边坡表面的平整度和顺直度不规则,而人工修理时又由于条件的限制不可能作深度挖掘,故经常性的会出现挡土支付后出现超挖和欠挖现象。这是深基坑支护工程施工中较为常见的不足之处。
1.2 施工过程与施工设计的差别大
在深基坑中需要支护施工时,会用到深层搅拌桩,但其水泥掺量会不够,这就影响水泥土的支护强度,进而使得水泥土发生裂缝,另外,在实际施工中,偷工减料的现象也时常发生,深基坑挖土设计中常常对挖土程序有所要求来减少支护变形,并进行图纸交底,而实际施工中往往不管这些框框,抢进度,图局部效益,这往往就会造成偷工减料现象的发生。深基坑开挖是一个空间问题。传统的深基坑支护结构的设计是按平面应变问题处理的。在未能进行空间问题处理之前而需按平面应变假设设计时,支护结构的构造要适当调整,以适应开挖空间效应的要求。这点在设计与实际施工相差较大,也需要引起高度的重视。
1.3 土层开挖和边坡支护不配套
当土方开挖技术含量较低时,组织管理也相对容易。而挡土支护的技术含量较高,施工组织和管理都比土方开挖复杂。所以在实际的施工过程中,大型的工程一般都是由专业的施工队伍来完成的,而且绝大部分都是两个平行的合同。这样,在施工过程中协调管理的难度大,土方施工单位抢进度,拖延工期,开挖顺序较乱,特别是雨天期间施工,甚至不顾挡土支护施工所需要工作面,留给支护施工的操作面几乎是无法操作,时间上也无法去完成支护工作,对属于岩土工程的地下施工项目,资质限制不严格,基坑支护工程转手承包较为普遍,一些施工单位不具备技术条件,为了追求利润而随意修改工程设计,降低安全度。现场管理混乱,以致出现险情,未做到信息化施工和动态化管理。这也是深基坑支护施工中常见的问题之一。
2 深基坑支护实施策略
2.1 转变传统深基坑支护工程设计理念
现如今我国在深基坑支护技术上已经积累很多实践经验,初步摸索出岩土变化支护结构实际受力的规律,为建立健全深基坑支护结构设计的新理论和新方法打下了良好的基础。但对于岩土深基坑支护结构的实际设计和施工方法仍处于摸索和探讨阶段,而且,目前我国还没有统一的支护结构设计的相关规范和标准。土压力分布还按库伦或朗肯理论确定,支护桩仍用“等值梁法”进行计算。这些陈旧的计算理论所计算出的结果与深基坑支护结构的实际受力悬殊较大,既不安全也不经济。因此,深基坑支护结构的施工工程设计不应该再采用以往传统的“结构荷载法”,而应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系。
【关键词】高层建筑,工程施工,深基坑,支护施工,技术探讨
中图分类号:TU97文献标识码: A 文章编号:
一.前言
深基坑支护之所以存在的目的就是为了保护高层建筑的稳固性,具体的作用就是通过为高层建筑的地底承担挡土、截水的任务从而保证坑底稳定,能够承担必要的施工荷载,保证地下结构工程的顺利全面施工。深基坑支护结构是为了保证施工顺利,所以在施工期间搭建的临时支挡结构,但是并不能因为它是临时结构而小瞧它,它的型号的选择、工程的计算和施工正确与否,对施工的安全、工期、经济效益有巨大的影响,是保证高层建筑施工顺利的关键技术之一。同时基坑支护水平的好坏也决定着工程建设周围环境的好坏,包括地表建筑的安全性和地下管道和工程设施的安全。
二.深基坑工程的主要内容分析
1.测定坑底处的岩土,从而进行工程勘察与工程调查。具体来说就是确定坑底岩土的参数与地下水参数; 测定坑底周围的建筑物,周围地下埋设物的具体情况,了解建筑物周围道路等工程的建设和工作情况,并依据测定的信息对它们随着地层能够进行位移的限制做出估算分析,为建筑物的建设提供可靠的参考消息。
2.支护结构设计。包括挡土墙围护结构(如连续墙、柱列式灌注桩挡墙)、支承体系(如内支撑、锚杆)以及土体加固等。支护结构的设计必须与基坑工程的施工方案紧密结合,需要考虑的主要依据有:当地经验,土体和地下水状况,台坝四周环境安全所允许的地层变形限值,可提供的施工设施与施工场地,工期与造价等。
3.基坑开挖与支护的施工。包括土方工程、工程降水和工程的施工组织设计与实施。
4.地层位移预测与周边工程保护。地层位移既取决于土体和支护结构的性能与地下水的变化,也取决于施工工序和施工过程。如预测的变形超过允许值,应修改支护结构设计与施工方案,必要时对周边的重要工程设施采取专门的保护或加固措施。
5.施工现场量测与监控。根据监测的数据和信息,必要时进行反馈设计,用先进的信息化来指导下面的施工。
三.高层建筑工程深基坑支护施工中存在的问题分析
1.土体物理力参数难以选择和确定
深基坑支护结构的安全性能的好坏很大程度是受所能承受的土体压力大小影响的,但是在实际工程中由于地质情况变化无穷,存在很多的不确定性,这使得要选择一个适宜的土体物理力参数来精确计算实际土体压力,以目前的技术来看还是一个大难题,尤其内摩擦角、含水率和粘聚力这三个重要参数在深基坑开挖后更是一个可变值,这样就提高了准确计算支护结构实际受力的难度。除此之外,土体物理力学参数的选择还受支护结构形式及施工工艺等因素的影响。
2.对基坑土体取样不够完全
设计前对地基土层进行取样分析是深基坑支护结构设计的必要步骤。由于地质情况变化无穷,随机取得的土层样本不可能准确地反映土层的真实情况。故支护结构的设计并不能完全符合基坑的实际地质情况。
3.基坑开挖后的空间效应考虑不够周密
大量的深基坑开挖实例表明:基坑的四周朝内侧发生水平位移,且常常是中间比两边大,这种情况使得深基坑边坡失稳,故深基坑开挖还存在一个空间的问题。
4.理论计算受力与实际受力不符
在很多实际工程中,设计人员按极限平衡理论来确定安全系数及设计计算支护结构,这从理论上讲是绝对安全的,但这样会加大支护结构的建设成本,且不一定就完全适应工程;而有的工程虽然选择规范中较小的安全系数来设计支护结构,但却能满足实际工程的要求。
四.高层建筑施工过程中深基坑支护的设计与选择
一个基坑支护工程的能否成功,设计是很关键的。在深基坑所发生的事故中,由于设计原因造成的大约占了近一半的比例,由此可见设计的重要性了。具体要求如下。
1.主持设计的人员必须具备较高的专业知识,还要有丰富的支护设计的实际经验,对所要施工的地点的水文地质的特点要把握准确,对周边环境要熟悉。综合以上情况设计出科学合理的支护施工方案。
2.在设计选用深基坑支护结构时,应优先选择与工程基础桩相同类型桩作为基坑支护结构,若是本工程的基础桩采用的是钢筋混凝土灌注桩,那么基坑支扩结构也要最好采用这种桩型,不过它的尺寸可适当选用较小一点的,目的是为了节约进场成本。
(一)如果基坑比较深而围护桩布置允许的情况下,就要使用两排支护桩,因为用这样的方式,它的力学性最好并使两排桩和桩顶部的圈梁组成钢架结构,而桩间的砂石也与支护桩一起受力,这样就可使基桩的配筋量有所减少,从而降低了成本。
(二)如果围护桩必须达到防渗的需要时,而基坑的深度又小于七米,且回填土中又多是较碎的砖瓦时,就不适合使用水泥搅拌桩,而应该选用水泥注浆。北方地区,如果基坑较深,又有粘土,则可使用钢筋混凝土桩加锚杆支护形式,而其他地区一般采用大直径钢筋混凝土灌注桩,桩顶加钢筋混凝土圈粱,转角处加斜支撑。
(三)如果建筑的地基土是淤泥,而基坑又比较深时,则一般采用钢筋混凝土地下连续墙。如果工程造价较高,则可选用大直径两排钢筋棍凝土灌桩,中间加水泥搅拌桩,这各支护方式可防渗,又具有很好的力学性。总之,在选用围护桩时应设计多种方案,结合现场实际,考虑施工条件和土质水文情况,来选择最切实际的支护方式。
3. 在对高层建筑工程深基坑开挖时要遵循以下原则:自上而下,分层开挖、先撑后挖以及严禁超挖,在此基础上也要确保施工的连续性,确保基坑支护的暴露时间最少
4.相关人员在平整场地、修整坡面或者清理坑底需要使用机械设备时,要保持处于机械的回转半径之外,如果是在其内,必须停止机械工作,待调整好确认安全之后再进行施工。施工时如果离电缆线的距离是1m 之内必须严禁土方机械设备的运作。在机械设备使用过程中坚决不能对其检修,修整时,确保停机在最低位置,悬空的部位垫土。
5.挖掘机施工时,要在机械设备的性能的规定条件下工作,对开挖的深度以及高度都不能超过机械设备本身。
五.结束语
深基坑支护技术在中国的岩土工程中一个古老而又年轻的领域,我国环境的复杂性和多样性,对基坑技术的发展是一个挑战也是一个契机,说是挑战,在面对这些复杂的地质环境时只有不断地想办法才有可能把工程建设成,说是契机,在这一次次的想法子中,我们的技术不断的得到了进步。未来,只要把握好了方向,找到了突破点,再结合我国岩土的特性,基坑支护技术在中国将会得到突破性的发展,就目前我国基坑支护技术发展的现状,再综合其未来发展的趋势,摆在我们面前的问题还有很多很多,相信在各界共同努力,不断追求的精神下,深基坑支护技术在未来一定会得到新的发展和质的突破。
参考文献:
[1]伍喜群 对高层建筑工程深基坑支护施工技术的探讨 [期刊论文] 《城市建设理论研究(电子版)》 -2012年8期
[2]付国军 探讨高层建筑工程深基坑支护施工技术 [期刊论文] 《新建设:现代物业上旬刊》 -2012年1期
[3]欧顺成 探讨高层建筑工程深基坑支护施工技术 [期刊论文] 《城市建设理论研究(电子版)》 -2011年21期
[4]张伟 有关高层建筑工程深基坑支护施工技术研究 [期刊论文] 《城市建设理论研究(电子版)》 -2012年9期
[5]钱中华 高层建筑深基坑支护施工技术研究 [期刊论文] 《城市建设理论研究(电子版)》 -2012年12期
[6]裴翔宇 论现代建筑工程深基坑支护施工技术控制 [期刊论文] 《中国新技术新产品》 -2012年9期
【关键词】深基坑,施工技术,支护施工,分析探讨
中图分类号:TU74 文献标识码:A 文章编号:
前言
在建筑工程施工过程中,为保证房屋建筑基础及地下室的正常施工和周围建筑物、地下管线不受损害,需对地面以下开挖的土体所进行的一系列勘察、设计、施工和检测等工作,统称为深基坑工程。作为建筑施工过程中的一个重要组成部分,确保深基坑的施工质量具有重要意义。
二、深基坑施工技术要点分析
1、转变传统深基坑工程设计理念
我国的深基坑技术经过长时间的不断实践和发展,已经取得了一定的成效,初步摸索出变化支护结构实际受力的规律,为建立健全深基坑支护结构设计的新理论和新方法打下了良好的基础。但对于深基坑支护结构的实际设计和施工方法仍处于摸索和探讨阶段,到目前为止,我还对于支护结构的设计上还没有统一的标准和规范。还沿用一些传统的计算理论,从而造成计算结果与实际工程施工中的受力差别较大,在很大程度上增加了支护结构的不安全性,因此我们应彻底改变传统的设计观念,逐步建立以施工监测为主导的信息反馈动态设计体系,从而促进我国深基坑工程的健康发展。
2、重视变形观测, 并注意及时补救
深基坑支护结构变形观测的内容包括:基坑边坡的变形观测、及周围建筑物及地下管线变形观测等。通过对监测数据可以及时分析并及时了解土方开挖及支护设计在实际应用中的情况,分析其存在的偏差便可以及时的了解基坑土体变形状况以及土方开挖影响的沉降情况还有地下管线的变形情况等。对设计中存在的偏差,在下部施工中及时校正设计参数,对已施工的部位采取恰当的补救和控制措施,为此,要求现场变形观测的数据必须准确、可靠、及时,要求变形观测人员严格按照预定设计方案精心测量、认真负责,保证观测质量。如果在实际测量中确实发现异常情况,就需要即时研究采取措施以防止其恶化。而一旦出现大的变形或滑动,立即分析主要原因,做出可靠的加固设计和施工方案,使加固工作快速而有效,防止变形或滑动继续发展。研究和应用已有的基坑工程行业的和地区性规范以及当地的工程经验。对于重大复杂的基坑工程目前国内采用专家论证的形式,对保证工程安全、降低造价是有效和现实的一种方法。
3、深基坑过程的信息化
基坑工程实施阶段必须采用信息化施工,实时跟踪监测基坑支护结构和地下水治理系统的工作性状以及周围环境的动态变化,并及时采取有效应变应急措施,确保环境安全。基坑工程施工过程中必须进行监测,制定切实可行的详细的监测方案,并通过监测数据指导基坑工程的施工全过程。
三、建筑基坑支护施工技术探讨
1、逆作法技术
逆作法技术,主要是指在地下室基坑周围预先安置若干混凝土钻孔灌注桩或人工钻孔桩,在此基础上,逐层向下开展施工工作。就目前来说,逆作法工程施工技术是建筑基坑支护施工中比较先进成熟的施工技术。它采用平行立体操作的方法,对气候环境依赖性较小,能够充分的利用地下空间,最大限度的缩短工程期限。土方开挖和上部施工交替进行,很大程度上降低了由上部荷载造成土体持力层的压力。一般来说,在建筑工程基坑较大的情况下,要优先考虑逆作法技术施工,这样一来,能够使地下室的结构主体得到充分的利用,最终实现支护目的。但是,在使用逆作法技术时,其支撑位置的设置会受到一定的限制,使建筑工程开挖工作变得复杂。
2、土钉和复合土钉墙
土钉在加固和锚固建筑施工现场土体的杆件中发挥着重要的作用,一般来说,土钉墙包括加固后的原位土体、密排的土钉、防水部分和混凝土喷射表层等。土钉主要凭借土体受力变形时产生的被动粘结力或摩擦力来发挥支护作用。
建筑基坑支护施工局限于场地的大小,不利于进行放坡,当建筑基坑附近有可供施工利用的土体,施工区域的地下水位较低或给排水条件好的情况下,应采用土钉和复合土钉墙支护施工技术。土钉和复合土钉墙支护技术变形小、施工方便、对周围环境影响小、工作量小、节省原料、工程工期短等优点。区域地下水位以上或经过降水处理之后的砂土粉、质土、粘土等土体较适合采用土钉和复合土钉墙支护技术。
一般来说,土钉和复合土钉墙具体的施工过程是:首先,在工程施工的土体中进行预制钻孔。其次,在其中嵌入钢筋,然后采用低压或高压灌浆对土体进行水平孔灌浆,如果属于擦用重力灌浆则进行倾斜孔灌浆钻孔灌浆,如果施工需要,要进行二次高压灌浆,保证土钉的承载力。最后,将钢筋网片覆在表层,进行混凝土工作喷射,分层开挖土方。
3、排桩支护技术
在建筑基坑支护施工技术的应用中,桩排支护技术是其中较为常用的技术。桩排支护技术主要利用混凝土灌注桩或钢桩支撑施工土体,在土体的内部安置支撑构件或锚杆配合桩体对土地进行支护。一般来说,在具体的建筑工程中,应该根据工程施工的实际情况灵活选用内撑式支护结构、锚杆式支护结构、悬臂式支护结构和拉锚式支护结构等。在进行排桩支护时,对于钢桩来说,其承载力高,能够二次利用,但成本相对较高;而混凝土灌注桩具有施工方便,布置简单,造价经济等优点,在施工中应用较广。
在建筑施工过程中,应用排桩支护技术,一般来说,根据施工沉桩的方式,钢桩预制桩可以分为单独打入法钢桩和围檩打入法钢桩。根据施工成孔的类型,灌注桩可以分为干作业成孔灌注桩、套管成孔灌注桩和泥浆护壁钻孔灌注桩。混凝土灌注桩对钻孔质量、钢筋放置、混凝土灌注等要求较高,在工程施工时注意桩位偏差、桩底余渣、桩身完整性等情况的监测。而预制桩则要桩身挠曲度、位置、桩身表面缺陷、桩的尺寸等情况进行监测。建筑基坑施工中,使用排桩支护技术的工程,要等支护工作施工完成之后,才可以进行开挖工作。如果排桩处于的含有地下水土层时,一定要采用适当的隔水、止水措施,确保施工现场基坑内部和周围建筑的安全。在建筑基坑深度过大的情况下,要采用排桩和锚杆相结合的支护方式,在排桩墙上安置锚杆以增强土体承载力。
4、放坡开挖技术
通常,按照规定的角度对建筑基坑支护结构进行放坡施工,就是我们平时所说的放坡开挖。在建筑基坑支护施工技术中,放坡开挖技术经济方便。该技术在工程施工过程中需要许多挖好的土方,如果建筑工程所处的位置地下水位较低、给排水条件好、使用范围较广、地质条件优越,那么在项目工程中实施放坡开挖对周围的建筑物就不会造成较大的影响。
在具体的项目工程实施中,必须结合具体的施工情况选择恰当的类型。在工程放坡开挖时如果边坡太大,很可能会导致土体不稳,引起土体塌方;相反,若是边坡的坡度过小,那么就会导致施工人员的工作量增加和土体空间的浪费,还会给周围建筑物埋下安全隐患。所以,在建筑基坑支护施工中,要高度重视边坡的大小。
四、结束语
深基坑是整个建筑工程施工的重要内容,加强对施工技术的控制,严格采取合理的支护措施,并做好基坑的排水施工,有助于提高整个工程的安全性和稳定性,也有助于提升工程质量,实现较好的社会经济效益。
参考文献:
[1]吴光水; 徐文彬 论深基坑施工技术相关特点要点[期刊论文] 科技创新导报2010/15
[2]杜婧 对建筑深基坑施工技术的几点看法[期刊论文] 中华民居(下旬刊)2013/04
[3]张海江大型深基坑施工技术及环境保护[期刊论文] 建筑安全2011/0
[4]宋楠桥梁深基坑施工技术探讨[期刊论文] 科技创新导报2010/34
关键词: 深基坑; 支护结构; 优化设计
1. 深基坑支护结构工程特点
1.1 基坑深度越来越大
为提高有限的建筑地块的利用率,很多建筑都朝着地下空间发展,地下3~4层已属常见[1],6~7层的地下室也不断出现,基坑深度多大于10m,有些建筑的深基坑深度甚至已经超过地面建筑高度。
1.2 地质条件较差
随着城市化进程的不断推进,城市中的建筑物需要在有限的空间内根据城市规划需要进行相应的建设,因此,很多深基坑工程只能建设在地质条件较差的位置,极大地增加了深基坑支护结构工程的设计和施工难度。
1.3 深基坑支护结构工程周围环境复杂
在很多情况下,建筑企业在基坑周边已经建成或者正在建设其它工程,而在这种情况下,再次进行深基坑支护结构工程的建设,不仅导致深基坑支护结构自身安全可能难以保证,同时还可能对周边建筑物的安全产生影响。
2. 深基坑支护结构优化方案设计
2.1 深基坑支护结构优化方案的选择
表1 常见深基坑支护结构形式特点
[结构形式\&适用条件和特点\&土钉墙\&施工快速、成本低,但是一般应用在基坑深度小于15m的深基坑
支护工程中,而且在软土基坑中不能应用。\&水泥土墙\&利用搅拌桩和旋喷组合形式施工,
适用于深度小于6m的基坑支护工程。\&排桩\&适用于规模小以及排桩桩顶要求较低的基坑。\&双排桩\&刚度较大,尤其适用于地下存在障碍物无法施工的情况。\&地下连续墙\&整体性较强,适用于地质条件较差的基坑支护工程。\&]
在深基坑支护结构工程支护方案的优化选择时,需要综合考虑不同地层土壤特性差异以及地下水等因素所产生的影响。对此,需要综合考虑施工地点的实际地质条件来选择最优的支护方案,表1给出了常用支护结构形式的适用条件和特点。
2.2 支护结构方案的优化
深基坑支护结构工程的设计方案主要包括成本、工期、环境、可靠性、复杂度等因素的影响,其中的部分因素属于模糊因素,可以通过多目标决策模糊集理论进行评价,从而获取最佳的基坑支护结构方案。
根据指标总权重,对实际工程中各支护方案对优的隶属度的大小分别进行计算,然后对计算结果进行比较,最后选择对优隶属度值最大的支护方案作为深基坑工程支护结构方案。
3. 结语
论文分析了基于多目标决策的模糊层次分析方案进行深基坑支护结构方案的优化设计,通过实践的应用,证明该方法能够很好地实现深基坑支护结构方案的优选和设计,对保证工程质量具有一定的参考价值。
参考文献:
[1] 周传波. 武汉地铁站深基坑支护结构参数优化系统研究[J]. 地下空间与工程学报, 2012(06): 1267-1275.
[2] 李军权. 深基坑支护结构的优化设计[J]. 中外建筑, 2016(02):112-113.
[3] 戴佑斌, 张尚根, 周早生, 等. 模糊一致矩阵理论在地铁深基坑支护方案优选中的应用[J]. 岩土工程学报, 2005, 27(10):1162-1165.
关键词:重力坝,灌注桩,深基坑,围护结构
引言
近年来,基坑工程在我国发展很快,但事故较多,深基坑工程是一个古具有划时代特点的综合性的岩土工程课题,因为它既涉及到土力学典型问题和变形问题,又涉及到土体与支护结构的相互作用问题。基坑围护工程的设计与施工,既要保证整个支护结构在施工过程中的安要控制结构和周围土体的变形,以保证周围环境(相邻建筑物和地下公施等)的安全。如何确保基坑围护工程的安全可靠、经济合理、实用是当前现代化城市建设中一个非常重要和迫切的问题。本工程为上海东方体育中心为事例,介绍无支撑体系围护在深基坑施工中的应用。
1工程概况本工程为上海东方体育中心,将作为上海2011年第十四界世界游泳锦标赛主要比赛场馆。项目位于浦东新区杨思地区,场地以北为川杨河、西侧为黄浦江、东侧为济阳路、南侧远处为在建中环线,同时场地南侧与地铁11号线区间、11号线、8号线及6号线等三线交汇主题公园站较近,与11号线区间距离约为50米。本工程占地面积约为48万平方米。
游泳馆场地内有原水管及信息电缆穿越,后原水管进行搬移至施工场地外围,满足施工要求。信息电缆经过开槽排挖,并未发现其位置,将成为施工前需解决问题之一。场地内无其他管线或建筑存在,施工场地情况较好。
本工程游泳馆和室外跳水池均为地下一层(局部夹层)、地上三层的混凝土结构,结构外围有独立柱支撑上部钢结构柱和屋盖体系。
目前基坑开挖深度较大的情况下,比较依赖于使用支撑体系。支撑体系的使用对基坑的安全带来更可靠的保证,但也因为支撑体系的使用,对施工操作和工期控制提出更高的要求。如何在确保基坑安全的前提下,加快施工进度已成为亟待解决问题之一。无支撑体系围护在施工过程中,基坑围护变形量将较大,对周边管线和建筑的保护也将有必然的影响。
本论文以上海东方体育中心为工程背景,对无支撑体系围护在深基坑施工中的应用进行研究。
2 设计方案的优化与施工方案的选择
2.1工程特点
(1)工程量大
游泳馆主体基坑东、西及北侧区域周边场地较大,土方量达50万方。基坑周围周边建筑、管线等影响较少。
(2)工期紧
整个工程工期为18个月,地下室围护结构与地下室结构的施工期仅7个月。由于基坑跨度大,如采用一般含支撑的围护形式,需增加大量混凝土支撑及立柱桩,不仅拆撑、换撑等耗时较长,而且工程进度难以保证、经济效果亦不理想。
(2)工种交叉
本工程抗拔桩与抗压桩数量庞大.,场地内地下障碍物较多。由于桩基施工中还须考虑沉桩速度与挤土效应间的矛盾等,因此围护、桩基和挖土等工程施工需穿行。论文大全。本工程以上主要为钢结构,以下为钢混结构,在地下室施工阶段,土建与钢骨柱吊装须进行交叉施工。这些因素均会影响施工进度。
2.2 围护设置原则
在上海软土地区,对于开挖深度在9m左右的基坑,一般情况下可采用桩列式围护结构,内设水平支撑;如果基坑面积较大,在同样的围护条件下,也可采用中心岛法挖土,设置斜抛撑;另外,如果条件允许,还可以采用放坡形式结合重力坝进行围护。
结合本工程场地条件及基坑规模等具体情况,提出了以下三个基坑围护方案进行比选:
(1)钻孔灌注桩+止水帷幕+内支撑(两道砼平撑);(2)钻孔灌注桩+止水帷幕+两道钢抛撑;(3)一级放坡+深层搅拌桩重力坝体系。考虑本工程面积大、造价控制严、工期紧、工艺搭接要求高的特点,在周边环境较为宽松的条件下,遵循“安全、合理、快速、经济、可行”的指导原则,对三种支护方案. 见下表进行了比选,最后选用一级放坡和深层搅拌桩重力坝体系的围护方案。
表1支护方案比选
围护方案 安全、可行性 工期 对主体结构的影响 优缺点 一级放坡+ 深层搅拌桩 重力坝 可行 能满足要求 可行 无影响 基坑稳定性满足,且满足下部及上部结构流水施工进度,经济性较优,对设计及施工控制要求高 钻孔灌注桩+止水帷幕+两道钢抛撑 可行、安全性较好 超过合同工期2月左右、不可行 有一定的影响 止水效果好,围护变形小,工期无法满足建设要求,经济性一般
钻孔灌注桩+止水帷幕+内支撑(两道砼平撑)
关键词:高层建筑;深基坑支护;质量
Abstract: The accelerating pace of economic development in China under the background of urbanization ever-increasing level, the construction industry ushered in a new round of development peak, which high-rise building has increasingly become the main trend which was the era mode choice for the design of modern building construction projects. This paper will combine the year’s experience of work practice in high-rise building deep foundation construction technology and quality control support for the focus, the full text of the discourse, for reference.Key words: high-rise buildings; deep foundation pit; quality
中图分类号:TU74文献标识码: A 文章编号:2095-2104(2012)05-0020-02
一、高层建筑深基坑支护的主要形式和技术要求
(一)深基坑支护的主要形式
1.混凝土挡土墙与基底加固相结合的支护。该种形式因其技术含量较低,便于进行施工操作且成本较低等优势为建筑企业所青睐。但随着近几年对高层建筑工程要求的逐年提高,其施工工期长、环境影响较大、基层加固质量难控性高等不足之处也逐步暴露出来。
2.土钉墙支护。该种支护形式以钢结构为主干,结合混凝土面层形成较为坚固的混合土体,其以造价低廉、施工便捷和工艺简单等优点被广泛应用于深基坑支护工程中。
3.复合土钉墙支护。主要是由混凝土搅拌桩等超前支护组成的防渗帷幕,能够有效地解决喷射面与土体的粘结问题,并且具有较好的隔水性。基坑深度一般为 5~10m,比较适合在距离周围建筑物较远且对变形要求较高的基坑中使用。其优点是工期短、成本低、施工工艺简单。
4.喷锚网支护。是一种比较先进的支护形式,比较适合在土质条件较差的地方使用,具有施工灵活、设备简单、支护费用低、对基坑附近建筑物影响程度小等优点。
(二)深基坑支护的技术要求
高层建筑深基坑支护的主要作用是在基坑开挖过程中用以挡土和挡水,并以此来确保基坑开挖施工能够顺利进行,防止由于基坑坍塌对周边建筑、地下管线等造成危害。在高层建筑的支护结构当中一小部分是临时性的,大部分基本都是永久性埋于地下,如地下连续墙等。因此,支护结构不仅应能够确保基础安全,同时还要便于施工、经济合理。高层建筑深基坑支护的基本要求如下:其一,应采用技术先进、结构简单、可靠性高的施工技术,同时还要确保支护体系能起到挡土的作用,以保持基坑边坡的稳定;其二,应确保基坑周围建筑、道路以及地下管线等的安全;其三,基础施工应在地下水位以上进行;其四,经济上应合理,并注意环保和施工安全。
二、高层建筑深基坑支护的施工技术
在高层建筑的深基坑支护中,具体的施工流程一般包括以下几个步骤:
(一)施工前期的准备工作
在进行支护施工之前,需认真对施工现场的标高以及基坑开挖深度进行复核,并对基坑周边的建筑物类型、道路和地下管线等的详细资料进行调查,施工过程中一旦出现与勘查报告及设计要求不符的情况时,必须立即通知相关设计单位进行调整。
(二)支护桩施工
支护桩的施工是整个支护过程中较为重要环节,成桩的质量优劣直接影响整个支护结构的质量,因此,必须对施工过程的主要工序进行严格控制,如成孔、清孔、制作及安放钢筋笼、混凝土的配合比等。
(三)锚杆施工
锚杆是一种较为新型的成拉杆件,其一端与挡土墙进行可靠联结,另一端则锚固于地基的岩石中,主要是利用锚杆与岩石之间的锚固力来承受各种向外的倾覆力。当基坑开挖至锚杆的标高之后,应先进行土层锚杆施工,具体步骤为:钻孔、制作锚头、穿锚索、注浆,浆液通常采用水泥砂浆,注浆结束后,开始安装钢腰梁、台座、垫板、穿外锚具、最后进行张拉锚固,并在现场进行试验,确定锚杆符合设计要求后方可结束。
(四)土方开挖
在基坑土方开挖过程中,一般挖土量都会比较大,尘土会使周围的居民受到一定的影响,所以在开挖过程中,应采用分层开挖的方式进行,这样就可以一边挖一边运,避免了大量的土方堆积。土方开挖的速度应根据对围护结构监测结构的变化而变化,一旦结构发生位移、沉降等异常现象时,需立即停止,并及时查明原因,采取相应的措施进行处理。
三、高层建筑深基坑支护施工的质量控制要点
高层建筑深基坑支护的施工阶段是整个工程中较为关键的阶段,因此,必须对该阶段的质量进行严格控制。
(一)深基坑施工
在高层建筑深基坑工程中,包括许多重要环节,如挖土、防水、挡土及维护等,是一项较为复杂的系统工程,一旦其中任何一个环节出现失误,都将会对整个工程造成影响,严重时还会发生安全事故。因此,施工单位必须严格按照施工流程和有关的技术规范等组织施工,并对重要位置的施工制定详细可行的施工方案,同时还应加强过程控制。例如,在确定土方开挖方案时,需对基坑的地质报告、地下设施以及周边建筑物等实际情况进行详细分析,如果是特殊土体则应精心组织施工,对于软土地区而言,基坑的开挖深度不宜过大;膨胀土地区尽量不要在雨季进行开挖。
(二)深基坑周围土体止水效果的控制
由于地下水对深基坑工程的施工影响较大,因此,在地下水位较高的地区进行深基坑施工,必须制定详细的止水方案。在制定具体的止水方案时,应从防、降、排这三个方面加以考虑,并根据地勘部门提供的详细地质资料,分析地下水的主要成因,同时还应对基坑周围的环境进行深入了解,绝对不能仅靠不间断的抽水来降低水位,不然很有可能造成基坑附近的土体发生流失,致使周边建筑物不均匀沉陷,严重时甚至会发生管涌,不仅增加了处理难度,而且还会延误工期。止水帷幕是深基坑支护中较为常用一种止水措施,为了确保支护工程能够顺利进行,在止水帷幕施工时需注意以下几点:1.确保桩体质量合格;2.确保桩的密实度和搭接长度符合要求,防止桩头开叉、蜂窝、空洞等现象的发生;3.严禁在支护结构上随意开口,否则不仅会使支护结构的安全受到影响,而且还破坏了止水帷幕的效果,地下水则很容易从开口位置渗入。
(三)深基坑支护的信息化管理
深基坑支护信息化管理的主要手段是安排较为专业的施工监测人员对基坑及周围环境进行实时监测,并根据监测到实际情况与预期性状进行对比分析,发现异常情况及时采取相应措施进行处理,确保工程安全。深基坑支护的具体监测内容如下:1.支护结构顶部的水平位移情况;2.支护结构及周围建筑、道路的沉降、裂缝情况;3.基坑底部隆起情况。上诉监测内容除了应每天进行一遍目测之外,还应每隔 10m 左右设置一个观测点,并在基坑开挖后,每隔 3 天左右监测一次,位移较大时可调整为 1 天 1 次。监测到的结果必须能够真实反映被测目标的动态趋势,并绘制变化曲线图。另外,在开挖较深的基坑时,需对支撑的内应力进行测试,当应力值达到设计值的 90%时,应采取必要的防范措施。
(四)突发事件的处理
在高层建筑深基坑支护施工过程中,经常会发生一些不可预见的事件,为了确保支护结构的质量,需制定应急预案。常见的突发事件如下:1.基坑内流沙、管涌;2.支护结构局部出现沉降、裂缝;3.气象异常;4.相邻工地施工的影响;5.地下障碍物妨碍施工正常进行等。上诉突发事件一旦发生后,应及时启动应急预案,并组织有关单位研究解决对策。
结论:
总而言之,随着高层建筑的发展,深基坑支护的难度会越来越来。只有在施工过程中对施工质量进行严格控制,才能确保整体工程的质量。
参考文献:
[1]吴碧桥.唐兵.深圳国际商会中心超高层建筑施工技术[A].第三届中国建设工程质量论坛论文集[C].2009(11)
[2]甘尚琼.深基坑支护设计方案优选问题探讨[A].第二十届全国高层建筑结构学术交流会论文集[C].2008(06)
[3]丁伟祥.黄得建.天津滨海地区软塑地质条件下不同深基坑支护形式设计与施工探讨[A].第五届全国基坑工程学术讨论会论文集[C].2008(10)
【关键词】 建筑工程 深基坑支护 土钉墙 监测 概况 主动支护
伴随国民经济的快速增长,我国建筑工程的规模也在不断扩大,深基坑支护工程作为建筑工程施工的重要组成部分,其施工技术水平的高低将直接影响到工程建设的整体质量。目前最常见的基坑支护技术主要包括两种:主动支护与被动支护,本文根据具体工程实例进行分析,主要选用土钉墙支护技术进行施工,在施工过程中必须做好基坑支护监测工作,了解其施工要求,规范施工工艺流程,只有这样才能有效提升整个建筑工程的质量。
1 深基坑支护的概况
1.1 深基坑支护
对于深、浅基坑,目前工程界并没有统一的标准。1967年Terzaghi与Peck建议将6米以上深度的基坑定为深基坑,但实际施工中这种说法并没有得到广泛地认可。现阶段,我国深基坑施工中普遍将超过6米或7米的开挖深度看作是深基坑。基坑支护是指为确保地下室施工及附近环境的安全,选用支挡、加固等方式对基坑侧壁与附近环境加以保护。支护结构主要对侧向压力进行承受,主要包含水土压力、地面荷载、邻近建筑物基底压力及相邻场地施工荷载等引起的附加压力,其中水土压力为支护结构承受的主要压力。传统支护设计理论主要将基坑附近土体作为荷载,作为支护结构的“对立面”,随后按照围护墙位移的状况,进行支护设计。
1.2 土钉墙支护
作为一种新型支护方式,主动支护就是将基坑附近土体自支撑能力进行充分发挥及提升。目前主动支护主要分为水泥土墙支护、土钉墙支护、喷锚支护、冻结支护、拱形支护等方式,本文主要对基坑主动支护中的土钉墙支护进行分析与探究。
土钉墙是在新奥法的基础上基于物理加固土体的机制,在上个世纪70年代从德国、法国及美国发展出来的支护方式。上个世纪80年代早期在矿山边坡支护中我国采用了这种方式,随后土钉墙支护法在基坑支护得到了大量应用。土钉墙的组成成分为被加固土、放置于原位土体内的细长金属杆件与在坡面附着着的混凝土面板,最终实现重力式支护结构。将一定长度及密度的土钉设置在土体内,通过土钉和土一起完成作业,进而将原位土的强度、刚度进行有效提升。这种支护技术主要应用于12米以下的基坑开挖深度,如地下水位在坑底以上时,必须根据实际施工要求,进行有效排水与截水施工。
2 建筑工程深基坑支护技术的应用
2.1 工程概况
本工程由15层住宅楼含局部3层商铺(裙楼)组成,裙楼外侧边线范围内设1层连通式地下室。基坑长55.19m,宽36.10m,开挖深度约为4.9m。
2.2 土钉墙基坑支护施工
结合本工程的实际施工情况,选用土钉墙基坑支护的方式进行有效施工,应遵循一定顺序进行,如基坑西侧支护―南侧―东侧。其施工流程如下图1所示。
2.3 基本工艺
(1)钻设钉孔。选用土钉成孔的方式进行基坑支护作业,其成孔工具为洛阳钻机,将其孔径设置为80毫米,深度应确保其超过土钉长度100毫米,成孔倾角为15度。每钻进1米,并进行倾角地测量,避免偏向等情况的出现。
(2)土钉安装。与本工程基坑土钉墙支护设计需求相结合,进行土钉的制作,确保其长度在设计长度以上。每隔1.5米进行一组土钉的设置,选用搭焊连接的方式进行土钉连接,焊缝高度控制在6毫米,把土钉在成孔作业后设置在孔内。
(3)注浆。选用孔底注浆法进行土钉墙基坑支护注浆作业,其作业流程为在孔底插入注浆管,确保管口与孔底之间距离200毫米,注浆管应同时进行注浆与拔出作业,确保注浆管底能够在浆面以下,确保注浆过程中可以顺利从孔口流出,并将止浆阀设置在孔口,选用压力注浆的方式进行施工,确保水泥浆强度为M20,注浆压力控制在1到2Mpa之间。
(4)挂钢筋网并与土钉尾部焊牢。选用钢筋网进行土钉墙面施工,将其间距定为200毫米,在坡面上通过人工的方式进行绑扎钢筋的作业;搭接坡面钢筋的长度需在300毫米左右,随后顺着土钉长度方向在土钉端部两侧进行短段钢筋的焊接作业,同时在面层内将相近土钉端部通长加强筋进行连接及焊牢。
(5)安装泄水管。土钉墙基坑支护的泄水管制作应选用PVC管作为主要材料,泄水管长度必须在450毫米以上,并在管附近进行钻孔作业,孔数应控制在5到8个,随后在管外侧进行尼龙网布的包裹作业。泄水孔纵横距离定为2米,布置形状为梅花型并确保安装的牢固性。
(6)复喷表层混凝土至设计厚度。选用喷射混凝土方式进行土钉墙施工,其设计强度必须在C20左右,其厚度应控制在80毫米。第一,选用干拌方式,混合料搅拌时必须遵循相应的配合比进行施工,混凝土喷射施工过程中根据实际情况,可以将水泥重量为5%喷射砼速凝剂掺加到里面。在开挖土方、修坡施工后,及时完成土钉锚固作业,结束焊接钢筋网施工后,必须及时进行喷射混凝土作业。选用分层喷射的方式,由下到上的方式进行喷射混凝土作业。第一层喷射厚度应控制在4厘米到5厘米之间,确保其不出现掉浆现象后,进行第二层混凝土再喷射作业,直至其厚度符合设计规定。
3 建筑工程深基坑支护监测
基坑支护体系随着开挖深度的不断增加会出现侧向变位的情况,这种情况在施工中无法避免,基于此,基坑支护监测的关键就在于侧向变位的发展及控制。通常情况下,体系的破坏都具有相应的预兆性,在基坑支护监测中,施工单位必须做好现场指导工作,利用检测等方式及时分析、了解支护体系的受力情况。在监测中不仅要做好整个基坑支护检测工作,还要充分考虑其附近环境。这种监测方式可以掌握好基坑附近支护的稳定情况,在目前深基坑支护工程理论与相关技术支持下,施工实际情况往往存在或多或少的问题,根据本工程现场施工的具体情况,其地质环境较为复杂,可选用变形监测的方式进行基坑支护作业,这样可以保证施工的安全性。
选用的监测点布置范围为本工程基坑支护的边坡开挖影响范围,遵循其基坑深度2倍以上的深度进行分析,并对监测对象的特定范围进行充分考虑。本工程沉降位移监测点应在基坑边坡附近每个20米到25米的范围进行设置,这样可以为施工的顺利进行提供强有力的保障。并能对施工后路面损坏形成的原因进行分析。在施工前,施工单位必须认真调查路面的实际情况,主要选用拍照等形式对其现状进行分析,随后对形成相应文字进行归档。完成以上监测作业后,对于较大危害部位,可以选用石膏膜设点的方式进行施工,尽可能降低对工程施工的影响,并定期进行跟踪查看。分期分阶段将监测情况记录汇报有关各方。此类监测点的设置将在详细调查现状的基础综合确定,同时对在施工间出现的开裂,特别重视监测,将实际情况向相关单位及时上报。
4 结语
综上所述,在建筑工程深基坑支护施工中,土钉墙支护技术施工中具有较高的技术含量及较快的施工速度,这种施工技术在建筑工程基坑支护施工中得到了广泛地应用,可以对公路施工、交通基坑支护中的问题进行有效解决。在基坑支护技术应用中,必须详细检查施工现场的实际情况,提高技术水平,规范施工流程,做好监测工作,确保基坑支护技术符合施工要求,避免造成严重的经济损失。
参考文献
[1]胡浩,王路,胡小猛.高层建筑深基坑支护土钉墙技术应用研究[J].科技信息,2011年13期.
[2]闫君,王继勤,崔剑.土钉墙支护技术在青岛中惠商住楼深基坑中的应用[A].探矿工程(岩土钻掘工程)技术与可持续发展研讨会论文集[C],2003年.
[3]兰云才,虞利军,欧阳涛坚.软土地区深基坑支护工程实例[A].第十三届全国探矿工程(岩土钻掘工程)学术研讨会论文专辑[C],2005年.
[4]周玉印,从容.深基坑地下水控制技术创新与应用[A].新世纪 新机遇 新挑战――知识创新和高新技术产业发展(下册)[C],2001年.
[5]楼楠,胡玉祥.基于非固定站模式的大型深基坑变形监测[A].第二十一届海洋测绘综合性学术研讨会论文集[C],2009年.