美章网 精品范文 人工智能技术论文范文

人工智能技术论文范文

前言:我们精心挑选了数篇优质人工智能技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

人工智能技术论文

第1篇

在飞行流量管理方面,飞行流量管理系统通过与辅助决策系统相结合,构成了人工智能辅助决策系统的飞行流量管理模块。该模块主要通过计算飞行流量来避免飞行流量的冲突,进而根据分析结果进行航班的排序。从具体的应用情况来看,首先,飞行流量的计算需要大量的原始数据,而这些数据既包含了历史数据,也包含了实时数据。同时,由于这些数据是来自于空域、机场和气象等多个方面的复杂信息,所以系统需要建立相应的飞行流量管理数据库,从而保证数据的准确性和及时性,进而保证飞行流量计算结果的可靠性。其次,在进行飞行流量计算时,系统利用了飞行动力学计算原理。根据数据库的信息,系统对飞机的四维飞行轨迹进行了计算,从而可以得知飞机的降落时间和降落地点。这样,系统就可以得出任意航段和交汇点在任意时间的飞行架次,进而列出潜在的飞行流量冲突信息。再者,在得知以上信息后,系统需要对这些信息进行分析,从而进行航班的排序,进而避免飞行流量的冲突。在排序方面,系统不仅可以实现飞行计划的过程仿真,还可以找出空域资源的“空闲”状态,进而利用该状态,进行航班和起降顺序的调整。而具体的排序原则有两个,一是优先级排序,二是全排列。其中,优先排序是按照一定的标准给这些航班拟定优先级,然后按照优先顺序进行航班的排序。而优先级的拟定标准有很多,比如飞行任务、机型、机场和时间等因素,都可以成为优先级的拟定标准。全排列原则是对冲突的航班进行全排列,从而根据每一次排列的延误损失,选择损失最小的排序方法。相比较来说,全排序法虽然较为科学,但是系统需要承担的运算量较大,因此会占用系统较多的内存资源。

2人工智能技术在飞行冲突探测与解脱管理方面的应用

人工智能技术的应用可以使空中交通管理系统具有高智能化的特征,从而满足飞行冲突与解脱管理方案自动生成的需要。具体来说,实现这一功能的模块是飞行冲突探测与解脱辅助决策模块,而该模块是由冲突探测与解脱系统和辅助决策系统组成的。该模块不但可以实现飞行冲突的预测,还可以为管制人员提供飞行冲突调配的决策方案,从而减轻管制人员的压力,帮助他们做出正确的决定。所以,该系统的应用,弥补了人类与机器各自存在的不足,从而有效的避免了因人为失误或机械故障而造成的飞行事故。从原理角度来看,系统首先通过分析飞行冲突情况来制定可能的解脱方案,然后根据航空器优先级分类方法和冲突类型判定法等多种规则,进行方案的选择和排除。在这一推理过程中,为了保证系统推理的有效性,系统需要根据大量的规则来进行方案的推理选择。而这些规则,则要被统一存入知识库系统中。这样,管制人员只要在平时做好知识库系统的更新和维护,就能够保证系统推理的有效性,从而根据系统提供的方案,来进行飞行冲突航班的排序。

3结论

第2篇

人工智能技术是人类科学技术不断发展进步的必然结果,也是工业发展过程中,促进工业自动化科学化发展的重要推动力量。在人工智能技术的发展中,科技的发展和工业技术的进步会促进人工智能技术的发展;反之,人工智能技术的进步,可以完成那些人类自身无法办到、技术条件效果不好的生产技术操作。当前的人工智能主要是计算机技术的发展结果,随着计算机技术的飞速发展,通过对计算机信息特点和操作性能的了解和设计,使计算机操作系统具有更多更先进的人工化反应,并在实际的信息技术处理过程中,通过其系统内部的人工化、智能化识别和处理系统,对电气自动化控制和其他工业技术领域在运行中的问题进行自主解决。如今,人工智能技术已经取得了较大的进步,其研究发展项目也越来越多,越来越先进,实用性越来越强。人工智能技术已经广泛运用与工业自动化、过程控制和电子信息处理等先进的技术领域。人工智能技术通过模糊理论算法、遗传算法和模糊神经算法等方式,可以在电气自动化控制中,采取更灵活多变的控制方式,对电气自动化设备运行中的不稳定因素和动态变化进行自主的调整,从而保障其运行的准确和高效,减少出错率。人工智能技术的运用,可以大大减少在电气自动化控制等领域的人力成本,并且能够解决一些工作人员无法有效监控和解决的问题,做到及时有效。

2人工智能技术在电气自动化控制中的应用

2.1人工智能控制实现了数据的采集及处理功能

在电气设备的运行过程中,数据的采集和处理是了解电气设备自动化控制情况,发现运行过程中的问题和提出解决办法的重要依据。在传统的自动化控制中,由于技术水平和实际运行中的动态变化,数据的采集和传输无法做到准确和稳定,保存数据容易出现丢失的情况。人工智能技术的使用,可以保障电气自动化运行过程中对动态信息的及时收集和稳定传输,对相关数据的保存工作也更安全,这就提高了电气自动化的控制水平,充分保障了电气运行中的安全性和稳定性。

2.2人工智能控制实现了系统运行监视机报警功能

电气自动化控制是用电气的可编程控制器,控制继电器,带动执行机构,完成预期设计动作的过程。在此过程中,系统内部各部分之间的运行都要严格按照设计模型和函数计算的基础上进行,如果系统中的一点出现问题,就会造成整个自动控制系统的故障。在以往的自动化控制系统运行中,对系统内部各部分之间的运行数据和运行状态进行实时监测,对运行中的特殊情况进行及时的报警处理,帮助自动化系统及时处理可能出现的故障,提醒电气管理人员加强对电气系统的管理。

2.3人工智能控制实现了操作控制功能

电气自动化控制的主要特征之一就是通过计算机的一键操作,就可以实现对电气系统的整体控制,保障电气自动化运行符合现实的需要。传统的自动化系统的操作,需要靠人工对系统各个环节进行人工操作,从而促进自动化系统内部的协调和配合,这种方式既降低了自动化运行的效率,也增加了自动化系统的故障发生频率。人工智能技术对电气自动化系统的控制,是通过各种先进的算法,按照电气自动化的需求,对自动化系统进行自动化和智能化设计,从而实现对电气自动化控制系统的同时操作,大大提高了自动化控制的效率,减少了单独指令操作中容易出现的不协调情况的发生。

3人工智能技术在电气自动化控制中的控制方式

3.1模糊控制

模糊控制以模糊推理和模糊语言变量等为理论基础,并以专家经验作为模糊控制的规则。模糊控制就是在被控制的对象的模糊模型的基础之上,运用模糊控制器,实现对电气控制系统的控制。在实际控制设计过程中,通过对计算机控制系统的使用,使电气自动化系统形成具有反馈通道的闭环结构的数字控制系统,从而达到对电气自动化系统的科学控制。

3.2专家控制

专家控制是指在进行电气自动化控制过程中,利用相关的系统控制理论和控制技术的结合,通过对以往控制经验的模拟和学习,实现电气自动化控制中智能控制技术的实施。这种控制方式具有很强的灵活性,在实际运行中,面对控制要求和系统运行情况,专家控制可以自觉选取控制率,并通过自我调整,强化对工作环境的适应。

3.3网络神经控制

网络神经控制的原理就是基于对人脑神经元的活动模拟,以逼近原理为依据的网络建模。神经控制是有学习能力的,属于学习控制,对电气自动化控制中出现的新问题可以及时提出有效的解决办法,并通过对相关技术问题的分析解决,提高自身的人工智能水平。

4结语

第3篇

关键词:人工智能计算机技术

一、人工智能的定义

“人工智能”(ArtificialIntelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).

第4篇

论文摘要:随着计算机技术的发展和应用,制造也得发展已经离不开计算机了,计算机辅助工艺设计和人工智能应运而生,当很多非专业性人士对此概念十分模糊,本文初步解释两个概念和其应用范围。

计算机辅助工艺设计(CAPP:Computer Aided ProeessPlanning),自1965年由挪威人Nikbel提出以来,其系统特性经历了检索式、派生式、混合式、创成式、智能化等过程,智能化CAPP是当前CAPP系统的研究热点。CAPP是现代制造业信息化的一部分,是计算机集成制造系统(CIMS:Computer IntegratedManufacturing Systems)中的桥梁和纽带。“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。人工智能是相对于人类智能而言的,它是采用人工的方法和技术来模拟、延伸和扩展人类智能行为的一门综合学科。

将人工智能技术(AI技术)应用到CAPP系统开发中,使CAPP系统在知识获取、知识推理等方面模拟人的思维方式,解决复杂的工艺规程设计问题,使其具有人类“智能”的特性即为智能化CAPP,是AI在CAPP中的一种应用。

CAPP系统分为专用型和工具型系统。前者可以根据用户的特定需求定制开发,针对性强,具有较好的实用性,但对系统进行功能扩展困难;后者可以由用户根据自身特定的要求进行二次开发,可以实现更多的柔性和开放性,这种系统与CAD(计算机辅助设计)、CAM(计算机辅助制造)、PDM(产品数据管理)等系统的信息共享存在缺陷。

CAPP设计理论目前研究的很少,机械产品设计理论研究的较多,有学者认为设计理论与方法由设计理论基础层、设计工具和支持技术平台层等三大部分组成。有的学者提出四理论框架,即设计过程理论、性能需求理论、知识流理论和多方利益协调理论。CAPP设计理论与机械产品设计理论既有共同性又有特殊性,特别在智能化设计方法方面有较大的差别,因此认为面向智能化的CAPP设计理论与方法体系结构由有三层组成,即基础科学层、信息技术层和智能化设计方法层。

在机械产品工艺设计中,存在大量的不确定因素,许多问题需要靠经验来解决,早期建立在单纯依赖于成组技术基础上的CAPP系统,不能很好地解决这些离散知识的获取问题,只能设计出检索式或派生式系统。近年来,人工智能技术在CAPP系统

开发中的应用,使CAPP技术得到了较大的发展,人工神经网络技术就是AI在CAPP系统中一大应用。人工神经网络(ANN: ArtificialNeuralNetwork)是按照生物神经系统原理处理真实世界的客观事物,它由大量的简单的非线性处理单元高度并联而成,具有信息的分布式存储、并行处理、自组织和自学习及联想记忆等特性;多层前馈网络误差反向传播(ErrorBack Propagation,简称BP)算法。反向传播算法(BP)是一种监督训练多层神经网络的算法,每一个训练范例在网络中经过两遍传递计算:第一遍向前推算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;第二遍向后推算,从输出层至输入层,利用差错矢量对权值进行逐层修改。

AI在CAPP中的另一应用——粗糙集技术。粗糙集(RS:Rough Set)理论是一种擅长处理含糊和不确定问题的数学工具,在理论中“知识”被认为是一种对对象的分类能力,通常采用二维决策表来描述论域的信息,其中列表示属性,行表示对象,每行表示该对象的一条信息。属性分为条件属性和决策属性,论域中的对象根据条件属性的不同,被划分到具有不同决策属性的决策类中。在CAPP系统中,可以用RS理论构建专家系统,对知识进行获取及优化,其基本思路是:将各种零件的加工特征和已知加工方法表达成条件属性和决策属性的形式,一行表示一种零件,多种零件构成一个二维表,对属性进行量化,组织决策表,再采用一定的约简算法对属性集和属性值进行约简,去掉冗余的条件属性和决策规则,得到最小化决策规则集,当输入待加工的零件加工特征时,就可得到优化的加工工艺。

遗传算法,AI在CAPP系统的又一应用。遗传算法(Genetic Algorithm)是模拟达尔文遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成,每个个体实际上是带有染色体特征的实体。因此,在一开始需要实现从表现型到基因型的映射即编码工作,如二进制编码。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小挑选个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

智能化CAPP系统开发中还有模糊推理、混沌理论等智能化方法,实际应用中,往往将多种智能技术相互结合,综合运用,发挥各自的特长,如人工神经网络具有知觉形象思维的特性,而模糊推理等具有逻辑思维的特性,将这些方法相互渗透和结合,可起到互补的作用,提高智能化水平。

智能化是今后CAPP系统发展的主要趋势,但从目前的人工智能技术水平来看,不可能使CAPP系统在智能化水平上有实质性的突破,因为目前的人工智能技术主要是模拟人的逻辑思维和逻辑推理方面的能力,不能有效地模拟人的形象思维、抽象思维和创造性思维能力,而CAPP系统不仅要有推理的功能,还要有“联想”的功能, CAPP系统开发是要解决大量的人类思维活动方面的智能问题。因此要提高CAPP系统的智能化水平,必须在人工智能技术方面有新的发展,要解决人工智能技术方面的问题,必须在一些基础

理论和基础科学方面有新的突破,如在生命科学、数学等方面要有新的突破。由此可见,在可以预见的将来,智能化CAPP系统的发展仍将是在充分发挥人的智能优势的基础上,综合应用各种人工智能技术,实现CAPP系统的智能化。

通过以上论述,相信大家对计算机辅助工艺设计与人工智能以及AI在CAPP中的应用有了一定的了解。人工智能技术的不断发展,智能化CAPP系统必将在知识获取、表达和处理的灵活性和有效性上得到进一步的发展,提高CAPP系统的智能化水平,从而提高现代制造技术水平,是我国由制造大国成为制造强国。

参考文献:

第5篇

论文摘要:随着计算机技术的发展和应用,制造也得发展已经离不开计算机了,计算机辅助工艺设计和人工智能应运而生,当很多非专业性人士对此概念十分模糊,本文初步解释两个概念和其应用范围。

计算机辅助工艺设计(CAPP:Computer Aided ProeessPlanning),自1965年由挪威人Nikbel提出以来,其系统特性经历了检索式、派生式、混合式、创成式、智能化等过程,智能化CAPP是当前CAPP系统的研究热点。CAPP是现代制造业信息化的一部分,是计算机集成制造系统(CIMS:Computer IntegratedManufacturing Systems)中的桥梁和纽带。“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。人工智能是相对于人类智能而言的,它是采用人工的方法和技术来模拟、延伸和扩展人类智能行为的一门综合学科。

将人工智能技术(AI技术)应用到CAPP系统开发中,使CAPP系统在知识获取、知识推理等方面模拟人的思维方式,解决复杂的工艺规程设计问题,使其具有人类“智能”的特性即为智能化CAPP,是AI在CAPP中的一种应用。

CAPP系统分为专用型和工具型系统。前者可以根据用户的特定需求定制开发,针对性强,具有较好的实用性,但对系统进行功能扩展困难;后者可以由用户根据自身特定的要求进行二次开发,可以实现更多的柔性和开放性,这种系统与CAD(计算机辅助设计)、CAM(计算机辅助制造)、PDM(产品数据管理)等系统的信息共享存在缺陷。

CAPP设计理论目前研究的很少,机械产品设计理论研究的较多,有学者认为设计理论与方法由设计理论基础层、设计工具和支持技术平台层等三大部分组成。有的学者提出四理论框架,即设计过程理论、性能需求理论、知识流理论和多方利益协调理论。CAPP设计理论与机械产品设计理论既有共同性又有特殊性,特别在智能化设计方法方面有较大的差别,因此认为面向智能化的CAPP设计理论与方法体系结构由有三层组成,即基础科学层、信息技术层和智能化设计方法层。

在机械产品工艺设计中,存在大量的不确定因素,许多问题需要靠经验来解决,早期建立在单纯依赖于成组技术基础上的CAPP系统,不能很好地解决这些离散知识的获取问题,只能设计出检索式或派生式系统。近年来,人工智能技术在CAPP系统

开发中的应用,使CAPP技术得到了较大的发展,人工神经网络技术就是AI在CAPP系统中一大应用。人工神经网络(ANN: ArtificialNeuralNetwork)是按照生物神经系统原理处理真实世界的客观事物,它由大量的简单的非线性处理单元高度并联而成,具有信息的分布式存储、并行处理、自组织和自学习及联想记忆等特性;多层前馈网络误差反向传播(ErrorBack Propagation,简称BP)算法。反向传播算法(BP)是一种监督训练多层神经网络的算法,每一个训练范例在网络中经过两遍传递计算:第一遍向前推算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;第二遍向后推算,从输出层至输入层,利用差错矢量对权值进行逐层修改。转贴于

AI在CAPP中的另一应用——粗糙集技术。粗糙集(RS:Rough Set)理论是一种擅长处理含糊和不确定问题的数学工具,在理论中“知识”被认为是一种对对象的分类能力,通常采用二维决策表来描述论域的信息,其中列表示属性,行表示对象,每行表示该对象的一条信息。属性分为条件属性和决策属性,论域中的对象根据条件属性的不同,被划分到具有不同决策属性的决策类中。在CAPP系统中,可以用RS理论构建专家系统,对知识进行获取及优化,其基本思路是:将各种零件的加工特征和已知加工方法表达成条件属性和决策属性的形式,一行表示一种零件,多种零件构成一个二维表,对属性进行量化,组织决策表,再采用一定的约简算法对属性集和属性值进行约简,去掉冗余的条件属性和决策规则,得到最小化决策规则集,当输入待加工的零件加工特征时,就可得到优化的加工工艺。

遗传算法,AI在CAPP系统的又一应用。遗传算法(Genetic Algorithm)是模拟达尔文遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则由经过基因编码的一定数目的个体组成,每个个体实际上是带有染色体特征的实体。因此,在一开始需要实现从表现型到基因型的映射即编码工作,如二进制编码。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度大小挑选个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。

智能化CAPP系统开发中还有模糊推理、混沌理论等智能化方法,实际应用中,往往将多种智能技术相互结合,综合运用,发挥各自的特长,如人工神经网络具有知觉形象思维的特性,而模糊推理等具有逻辑思维的特性,将这些方法相互渗透和结合,可起到互补的作用,提高智能化水平。

智能化是今后CAPP系统发展的主要趋势,但从目前的人工智能技术水平来看,不可能使CAPP系统在智能化水平上有实质性的突破,因为目前的人工智能技术主要是模拟人的逻辑思维和逻辑推理方面的能力,不能有效地模拟人的形象思维、抽象思维和创造性思维能力,而CAPP系统不仅要有推理的功能,还要有“联想”的功能, CAPP系统开发是要解决大量的人类思维活动方面的智能问题。因此要提高CAPP系统的智能化水平,必须在人工智能技术方面有新的发展,要解决人工智能技术方面的问题,必须在一些基础

理论和基础科学方面有新的突破,如在生命科学、数学等方面要有新的突破。由此可见,在可以预见的将来,智能化CAPP系统的发展仍将是在充分发挥人的智能优势的基础上,综合应用各种人工智能技术,实现CAPP系统的智能化。

通过以上论述,相信大家对计算机辅助工艺设计与人工智能以及AI在CAPP中的应用有了一定的了解。人工智能技术的不断发展,智能化CAPP系统必将在知识获取、表达和处理的灵活性和有效性上得到进一步的发展,提高CAPP系统的智能化水平,从而提高现代制造技术水平,是我国由制造大国成为制造强国。

参考文献:

第6篇

【关键词】人工智能;计算机网络技术;应用;优化

【中图分类号】TP393【文献标志码】A【文章編号】1673-1069(2020)08-0180-02

1引言

人工智能技术与大数据技术是新时期计算机网络技术快速发展的产物,在这一背景下,人工智能技术、大数据技术应用水平得到了很大提升,各个行业都需要将人工智能技术、大数据技术、计算机技术进行有效融合,积极探索先进技术的应用形式,明确计算机网络技术发展趋势,为技术研发控制工作的开展提供支持,满足计算机网络技术的科学发展需求。基于此,文章阐述了人工智能技术的相关内容,介绍了人工智能在计算机网络技术中的应用,总结了实践应用及优化措施。

2人工智能技术概述

人工智能技术将计算机科学、心理学、生理学、语言学等进行了有效融合,这项技术赋予了机器人工智能功能,机器可以针对复杂、危险的工作进行有效处理,既能够提升工作效率,又可以保障人身安全[1]。目前,人工智能技术呈现出综合性特点,为计算机科学技术的进步、发展提供了技术支持,技术人员需要将人工智能技术作为核心,针对数值计算、问题求解进行优化,可以将其发展成知识处理,人工智能还可以处理各项不确定信息,加深对系统资源状态的实时了解、追踪,以获取更多有效的信息内容,向用户提供更多的信息。人工智能技术的写作能力比较强,能够针对很多资源、信息进行整合,用户可以共享、传输各项信息,根据多写作的分布式人工智能思想、网络管理,提高网络管理工作效率、效益。在网络智能化管理过程中,人工智能具有很大优势,具备很强的学习能力、推理能力,其在网络管理中的应用能够快速、准确处理各项信息,还具备记忆功能,可以存储更多信息,构建信息库,针对信息进行总结,产生高级的信息。

3计算机网络技术中人工智能应用现状

在科学技术的快速发展中,计算机网络涉及范围日益扩大,人工智能技术和计算机网络进行有效融合,人民群众越来越关注人工智能技术优势及发展。在日常工作、生活过程中,人们可以利用人工智能技术,有效地处理模糊信息,改善了传统计算机网络技术局限性的影响,人工智能技术还能够根据网络环境强化信息监控力度,提高工作的准确性。同时,人工智能技术能够确保各项管理工作的协调性,利用人工智能技术可以制定信息约束管理系统,配合人工智能技术全面监测各项网络信息,突出各个管理层相互协作的特征。现阶段,人工智能技术的应用范围更加广泛,并处于快速发展时期,在未来社会的发展中人工智能技术水平也将提升,为人民群众的生活、工作提供更多便利。

4人工智能在计算机网络技术中的应用

4.1网络安全管理

在信息技术的快速发展中,网络安全管理是完善、探索过程中的关键管理工作,网络安全管理工作为提升网络技术应用提供了基础保障,通过确保网络技术应用安全,可以为生产工作的有效性提供支持。在这一背景下,技术人员利用大数据技术、人工智能技术,可以有效地规划网络安全管理工作要点,满足网络安全管理中的各项技术应用需求,其主要原因是大数据技术、人工智能技术的应用,有效地提升了网络安全管理系统的防护能力,为网络安全管理提供了防护保障。例如,在大数据时代,为了满足计算机网络技术、人工智能技术应用需求,应建立网络安全防护中的人工智能防护体系,可以将智能拦截防护技术、人工智能技术进行融合,组建技术控制中的核心防护网络体系,将其作为计算机网络技术传输的信息防护形式。另外,在网络安全管理过程中,利用人工智能技术、大数据技术,可以有效地整合网络安全防护体系,提升网络安全防护技术水平。

4.2数据采集与分析

现阶段,在数据采集分析过程中,技术人员需要强化人工智能技术的应用,工作人员在应用计算机技术的过程中,会产生庞大的数据量,需要挖掘更多的数据,大数据时代信息逐渐呈现出多样性、数据总量大等特点,单纯地依赖传统技术采集数据压力相对较大,而利用人工智能技术可以有效地解决数据采集问题,科学、合理地采集、分析更多数据,有效地提升数据分析效率。

4.3计算机网络系统管理及评价

为了满足大数据时代的多元化功能、服务需求,需要将计算机网络技术、人工智能技术进行融合。在计算机网络安全管理过程中,技术人员需要将人工智能渗透到计算机网络技术中,确保网络管理的安全性,其具备的问题求解技术、专家知识库能够促使计算机网络综合管理。现阶段,计算机网络呈现出瞬变性、动态性、复杂性特点,人工智能技术的应用可以将复杂的计算机网络综合管理进行简单化处理,为综合管理提供便利[2]。同时,以人工智能技术基础发展的专家决策、支持方法,已在信息系统管理中得到了有效应用,并取得了很大效果,专家系统可以自主吸收、总结专家的经验、知识,将更多的经验、知识录入系统中,针对系统知識进行完善,能够利用汇集的专家经验自主解决、处理更多相似问题。另外,人工智能技术在计算机网络管理、系统评价中的应用,可以有效地解决复杂工作。

5人工智能在计算机网络技术中的优化措施

5.1提升人工智能的智能化程度

现阶段,技术人员需要强化人工智能技术研究力度,不断提升智能化水平,充分发挥出人工智能在计算机网络中的作用,为了提升人工智能技术的智能水平,需要针对场景、数据模拟效果进行强化,如人工智能技术的应用可以根据计算机网络技术特点,创新、优化人工智能系统。

5.2政府与企业参与技术创新

人工智能技术属于高新技术,在应用、推广过程中,工作人员需要进行改革创新,政府、企业是人工智能技术的创新主体,对于政府部门来说,企业创新具有很大优势。政府部门需要根据人工智能技术研发相应的政策支持,营造良好的环境,在人工智能技术创新过程中,需要大量资金、优秀人才作为支持,政府部门需要发挥领导作用,鼓励企业进行创新,还需要加大资金投入力度,促使人工智能技术向高层次进行发展。

5.3强化网络安全维护人工智能应用环境

人工智能在计算机网络技术中的应用,需要强化网络安全维护工作,促使人工智能技术更好地应用到计算机网络技术中,相关部门需要强化网络安全维护工作,营造良好的人工智能技术应用环境,重视信息泄露问题,确保各个部门放心使用人工智能技术,实现人工智能技术应用的预期效果[3]。

6结语

第7篇

关键词:关键词:人工智能;应用领域;发展趋势

中途分类号:TP39    文献标识码:A     文章编号:

引言:

计算机学科的一个重要分支就是人工智能,它与基因工程、纳米科学被列为二十一世纪三大尖端技术、同时人工智能是一门汇集了多种学科相互渗透发展起来的交叉学科。对于人工智能的定义,至今尚未统一,美国斯坦福大学人工智能研究中心尼尔逊教授认为:人工智能是关于知识的学科——怎样表示知识以及怎样获得知识并使用知识的科学;麻省理工学院的温斯顿教授认为:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。除此之外,还有很多种不同的观点,但这些说法都形象地反映了人工智能学科的基本内容和核心思想,那就是:人工智能是研究如何用人工的方法在计算机上模拟、实现和扩展人类智能的一门科学与技术。

1. 人工智能技术的发展

人工智能((Artificial Intelligence)从上世纪50年展到现在,有也有低迷的时期。研究的方法和研究的态度也有多种,不管是何观点,它们都推动着人工智能技术的发展。今天人工智能技术已渗透到人类生活的方方面面,实实在在的影响着科学技术的发展。

2. 人工智能技术的应用

我们可以看到,当今社会很多领域的各种技术的发展都涉及到了人工智能技术。下面就人工智能的几种典型应用做如下探讨:

2.1人工智能应用之问题的求解

人工智能中的问题解求,就是如何让机器去解决人类会遇到的问题,如何根据某一具体问题找到思考问题并解决这个问题的方法。目前,人工智能技术已经可以通过计算机程序解决了如何考虑要解决的问题,并能寻求较为准确的解决方案。

2.2人工智能应用之逻辑的推理与定理的证明

人工智能研究中最持久的探究领域之一就是逻辑推理。有关定理的证明就是让机器证明非数值性的真假。其中比较重要的是,通过找到合理、准确的方法,集中注意力在大型数据库中的有效事实,关注可信度证明,并在出现新信息时适时修改这些证明。

2.3人工智能应用之自然语言的处理

智能的另一表现就是进行自然语言的交流,自然语言处理就是让机器与人类进行无阻碍的沟通,这正是人工智能技术应用于实际领域的典型范例。目前此领域的主要研究内容是:如何利用计算机系统以主题和对话情境为基础,生成和理解自然语言。

2.4人工智能应用之模式的识别

如何使机器具有感知能力也是智能的表现。模式的识别是利用人工智能技术开发智能机器的关键,主要是通过计算机用数学技术方法来研究模式的自动处理和判读,让计算机实现“看见”,“听见”等功能。计算机模式识别的主要特点是速度快,准确率高,效率高,计算机模式识别也为人类认识自身智能提供了有利帮助。

2.5人工智能应用之智能信息的检索技术

在科学技术飞速发展的今天,人类已进入了“知识爆炸”的时代。传统检索系统已经满不足了对如今如此数量巨大以及种类繁多的文献检索要求。人工智能科技持续稳定发展的重要前提就是智能检索模块,可以说,智能信息的检索技术的运用势在必行。

2.6人工智能应用之专家系统

我们常说的专家系统就是指从人类专家那里获取的知识,并用来解决只有专家才能解决的疑难问题。这是一种基于知识的系统,从而也被称为知识基系统。专家系统是人工智能技术中研究最活跃,最有成效的一个领域。现在的专家系统尤其特殊的模仿了专家在处理故障时的思维方式,其水平有时甚至可以超过人类专家的水平。

2.7人工智能应用之机器人学

机器人对我们并不陌生,已在多个领域获得了越来越普遍的应用,诸如农业、工业、商业、旅游业、航空和海洋等。那么,机器人学所研究的问题主要包括从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法。机器人和机器人学的研究对人工智能思想的发展都起到了促进作用。

3. 人工智能技术发展趋势

科学技术是第一生产力,但技术的发展往往是远远超越我们的想象。就目前的一些前瞻性研究可以看出,未来人工智能技术的发展有如下几大趋势:

3.1问题求解

问题求解一般包括两种,一种是指解决管理活动中由于意外引起的非预期效应或与预期效应之间的偏差。正在逐渐发展成为搜索和问题归约这类人工智能的基本技术;另一种问题的求解程序,是把各种数学公式符号汇编在一起。其性能已达到非常高的水平,并正在被许多工程师和科学家应用,甚至还有些程序能够用经验来改善其性能。

3.2机器学习

人工智能研究的核心课题之一就是机器学习。我们知道学习是人类智能的重要特征,那么机器学习就是指机器自动获取知识的过程。机器学习是机器获取知识的根本途径,也是机器智能的重要标志。计算机的机器学习主要研究内容为如何让计算机模拟或实现人类的学习能力。今后机器学习的研究主要是研究人脑思维的过程、人类学习的机理等。

3.3模式识别

用计算机实现模式(文字、声音、人物、物体等)的自动识别,弥补计算机对外部世界感知能力低下的缺陷,使计算机能够通过感官接受外界信息,识别和理解周围环境。依然是人工智能技术今后研究的重要方向。因为模式识别能为人类认识自身智能提供线索,也是开发智能机器的一个最关键的突破口。目前计算机模式识别系统的研究热点主要为三维景物、活动目标的识别和分析方面。传统的用统计模式和结构模式的识别方法将会被近年来迅速发展起来的模糊数学模式、人工神经网络模式的方法逐渐取代,特别是神经网络方法在模式识别中取得较大进展。

3.4专家系统

专家系统是根据某领域中一个或多个专家提供的知识或经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题的智能软件,它是一个具有大量的专门知识与经验的程序系统。目前各种专家系统已遍布各个专业领域,因此专家系统还将是人工智能应用研究最广泛和最活跃的应用领域之一。

3.5人工神经网络

人工神经网络,常被简称为神经网络或类神经网络。是未来人工智能应用的新领域,人工神经网络是指由大量处理单元(神经元)互连而成的网络。人工神经网络具有很强的自学习能力,主要擅长处理复杂的多维的非线 性问题,不但可以解决定量的问题,还可以解决定性的问题,同时人工神经网络还具有大规模并行处理和分布的信息存储能力。或许未来智能计算机的构成可能就是作为主机的冯•诺依曼型机与作为智能外围的人工神经网络的结合。

4. 结论语

人工智能的基本思想已经在许多领域中得到应用,对于人工智能技术未来的发展还有很多未知的可能,但无论如何发展都将推动人类在科学与生活领域的发展。

参考文献:

[1]胡勤.人工智能概述[J].电脑知识与技术,2010,(13):3507-3509.

[2]朱福喜,汤怡群等.人工智能原理[M].武昌:武汉大学出版社,2002.87-91.

[3]张妮等.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.

[4]亓慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008,(05):33.

[5]蔡自兴,徐光.人工智能及其应用[M].北京:清华大学出版社,2003.51-93.

[6]王鸿斌,张立毅等.人工神经网络理论及其应用[J].山西电子技术,2006,(02):41-43.

第8篇

关键词:人工智能 计算机技术

一、人工智能的定义

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).

第9篇

【Abstract】Artificialintelligencecanbesaidtobethefourthhumanrevolution.Theartificialintelligencetechnologyiscontinuouslyadvancingaroundtheworld,andChinaisalsocloselyfollowingthepaceoftheworldandconstantlyexploringthefieldofartificialintelligence.However,withtheemergenceofmoreandmoreartificialintelligencetechnologiesandequipment,theinfluenceofartificialintelligenceonsocietyisgrowing.ArtificialintelligencehasagreatinfluenceonthedevelopmentofChina'sindustrialeconomy.Thispaperbrieflydiscussesandanalyzestheseinfluencesthroughinvestigationandconsultingdata.

【關键词】人工智能;工业经济;影响

【Keywords】artificialintelligence;industrialeconomy;influence

【中图分类号】F426;TP18【文献标志码】A【文章编号】1673-1069(2020)11-0029-02

1引言

在20世纪人工智能技术有了质的飞越,取得了突破性的进展。而近年来人工智能技术仍旧在不断发展,应用人工智能的行业也随着人工智能技术不断发展在不断地增多,例如,军事行业、服务行业、驾驶行业等。而随着人工智能在这些行业的应用,对我国工业经济的发展也起着一定的作用,本文简要地讨论了相关的内容。

2人工智能对我国工业经济的影响

2.1替代劳动力

我国是工业、农业大国,很多人以劳动作为工作、赚钱的途径,人工智能时代的到来有可能会替代劳动力,这种影响有利也有弊。对于个人而言,很多农民工会思考自己的工作和技能是否会被人工智能取代,有危机感。但是好处是这些人员会促使自己去学习新的知识以及能力,不断地提高自己的专业能力,发展新的技能,防止被取代[1]。对于企业而言,不断地使用劳动力会持续增加资金投入,很多工业相关企业考虑到雇一个工人的综合用工成本是很高的,除了薪酬外,还包括为员工缴纳五险一金等问题,因而他们会优先使用人工智能。但人工智能的应用只需要一次性投入,可以减少企业的资金投入,创造更多的经济利益。工业企业使用人工智能技术以及设备可以减少资金、税金的投入,因而很多企业出于成本考虑优先使用人工智能,这样自然而然会带来失业问题。但是工业企业并非随意应用人工智能,当下我国法律就工业领域人工智能应用问题加强了对劳动者的保护。对人工智能会替代劳动力这个问题不同的人员有着不同的想法,有的人是持悲观的态度,有的人持乐观的态度,根据调查可知,大多数的经济学家是持相对悲观态度的,认为人工智能有可能会替代劳动力,从而影响工业经济增长。

2.2增加就业岗位

前面讲到人工智能在工业领域中的应用会替代劳动力,但与此同时也会创造就业岗位。众所周知,人工智能包含很多方面,在工业领域中很多人工智能的自动化技术以及设备逐渐得到应用,这些新引进的先进设备为人们创造了新的就业岗位,带动了工业经济增长从而推动了国家的经济增长。根据一些专家、学者的研究发现,人工智能技术以及设备的应用实际会为那些没有应用人工智能的生产环节创造更多的就业岗位,让工人、劳动力可以专注于无法通过人工智能完成的工作。

2.3促进产业结构优化

近年来,很多人工智能技术应用在工业领域中,如大数据、云计算、5G通信等,这些技术的应用导致工业的生产、传输、存储、处理、分析等不同环节发生全方位、革命性变化,这些数据、算法变化是依靠人工智能技术运行的,从某种方面上讲,工业领域中的一些人工智能技术可以说是一种现代的信息技术,是当下互联网时代的重要组成部分。随着这些人工智能的应用,我国工业领域也发生了翻天覆地的变化。人工智能技术涉及很多现代先进的技术,这些先进技术的应用必然会促进工业产业链中各环节技术产品的集群式、爆发式增长,优化了产业结构,从而促进工业经济的增长[2]。

2.4促进工业生产智能化,提高生产效率

随着时代的发展以及社会的进步,人工智能技术不断地应用在工业领域,这些智能化设备技术的应用促进了工业行业生产流程的智能化。在改革开放初期,我国科学技术不发达,很多工业领域中的生产设备都是流水线式生产,工业工作中所涉及的每一步工作都需要人工操作,很多关键的工作环节以及决策判断都需要依靠人力劳动或者人们思考来进行。但是人工智能自动化时代的到来为工业生产带来了智能化和集成化的改变,可以提高工厂的工作效率,使用更多的人工智能设备以及技术,这意味着工厂和车间可以实现更长的作业时间。众所周知,当前劳动力成本逐步提高,尤其是加班需要支付两倍或者三倍的薪资,但是设备不需要,工厂只需要支付值班人员的费用就能够让工厂二十四小时开工运转,可以在提高生产效率的同时减少资金投入。目前,在美国、德国等一些国家都已经出现了不停工的“无人工厂”[3]。

2.5降低工业生产的危险性

工业是我国几大产业之一,其对我国的经济发展有着很大的促进作用,在工业领域中很多工业生产工作都涉及高危险性的环节,在之前人工智能还没出现时每一项工作都需要由工作人员亲自操刀去实践,即使危险系数高的工作也需要由工作人员去进行,因而经常会出现一些危险事故,造成工作人员的伤亡,面对这些危险因素当时的管理人员以及工作人员是无能为力的。但是人工智能的出现可以制造出工业机器人,或者相关的保护装置,高危工作可以由人工智能机器人进行处理,如果必须由工作人员来进行可以利用先进的设备来探测危险,最大限度降低危险发生的可能性。人工智能在工业领域的应用,在降低人工风险的同时还可以提高劳动生产率,减少生产商品的社会必要劳动时间。

2.6提升工业产品的质量和性能

人工智能在工业领域的应用对工业产品的质量有着一定的影响,它可以提高工业产品的质量。如纺织加工工业,在人工智能应用之前,很多缝合工作都是需要人工来进行的,即使工作人员的操作十分娴熟,每个人缝合出来的成品还是有差距的,每人每天缝制的质量可能存在差异,这种情况不利于产品的销售,并且会导致出现企业资源浪费等现象。而随着人工智能的应用,很多流水线工作都采用机械进行制造,每一个步骤都是经过智能化机械完成的,彼此之间的差异是很小的,与此同时,还可以最大限度地保障产品的质量。除此之外,人工智能还能应用于工业产品的研发设计上,人工智能可以做到人们靠手工无法完成的工作或者计算出人类无法计算出的数据[4]。人工智能在工业产品研发中的应用可以提高工业产品的品质和性能,使其具有更高的经济价值与使用价值。在工业领域中应用人工智能可提升质检水平,提高产品合格率。人工智能在生产线各个环节全面实时监控,与传统方式相比,人工智能对生产过程的监控能大幅度提高企业对产品质量的监管和控制能力,降低产品不良率,提高生产效率。有的工业企业采用人工智能对产品生产过程进行全面质检,不仅可以节省资本还可以创造更多的利益。

第10篇

关键词:人工智能;电气;自动化

人工智能技术是随着计算机技术发展逐步形成的,是基于人的智能为基础理论进行研究和探索,其目的是开发出一种能够具有人类智能的智能机器,在当前最为常见的人工智能方式有机器人、语言识别和图像处理系统。人工智能是计算机科学的一个分支,是计算机发展中利用相应的技术手段对各种信息资源进行辨别和分析的基础。随着社会发展中,人们对电力需求的日益增加,使得在电力系统发展的过程中,对其控制方式也在逐步的提高。要实现其良好的控制措施和控制手段,传统的人为控制方法早已无法满足当前社会发展的需求,这就使得在电气施工中对人工智能技术要求不断增加,从而提高电气设备运行质量。实现机械的自动化,能够使得机械在进行运转的过程中脱离人类的控制自我进行调节和运行,从而降低人力成本和管理成本。积极运用人工智能的新成果无疑有利的,是基于当前电气自动化学科应用和分析过程中实现其发展的前提和关键,更好死社会发展中智能技术手段进行分析与应用的结局。

1、人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟,延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质.并生产出一种新的能以人类智能相似的方式作出反应的智能机器 该领域的研究包括机器人、语言识别、图像识别 自然语言处理和专家系统等。自从1956年“人工智能 一词在Dartmouth学会上提出以后,人工智能研究飞速发展,成为以计算机为主.涉及信息论.控制论, 自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学的一门学科。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂的工作。 当今社会,计算机技术已经渗透到生产生活的方方面面,计算机编程技术的日新月异催生自动化生产,运输,传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈,所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出犷新的挑战,促进了智能理论在控制技术中的应用, 以解决用传统的方法难以解决的复杂系统的控制问题。

当今社会,计算机技术已经渗透到生产生活的方方面面.计算机编程技术的日新月异催生自动化生产,运输 传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈.所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产.流通、交换、分配等关键一环.实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2、人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但Al控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解.也有利于控制策略的统一开发。这些Al函数近似器比常规的函数估计器具有更多的优势.这些优势如下:

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)。

(2)通过适当调整(根据响应时间 下降时间、鲁棒性能等)它们能提高性能。例如模糊逻辑控制器的上升时间比最优PID控制器快1.5倍 ,下降时间快3.5倍, 过冲更小。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时.通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。

总而言之,当采用自适应模糊神经控制器、规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置.自学习迅速,收敛快速。

3、人工智能的应用现状

随着人工智能技术的发展,许多高等院校及科研机构就人工智能在电气设备的应用方面展开了研究工作,如将人工智能用于电气产品优化设计,故障预测及诊断、控制与保护等领域。

3.1 优化设计

电气设备的设计是一项复杂的工作 它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的.因此很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进.使传统的CAD技术如虎添翼.产品设计的效率及质量得到全面提高。用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计。因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

3.2 故障诊断

电气设备的故障与其征兆之间的关系错综复杂,具有不确定性及非线性.用人工智能方法恰好能发挥其优势。已用于电气设备故障诊断的人工智能技术有:模糊逻辑、专家系统、神经网络。

变压器由于在电力系统中的特殊地位而备受关注,有关方面的研究论文较多。目前对变压器进行故障诊断最常用的方法是对变压器油中分解的气体进行分析.

3.3智能控制

人工智能控制技术在自动控制领域的研究与应用已广泛展开.但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。由于模糊控制是其中最为简单、最具实际意义的方法.因而它的应用实例最多。

第11篇

2017年7月,IBM对外数据,IBM Watson Oncology已经覆盖了全球50多家医院,2017年上半年服务将近4万名患者和医生,覆盖的癌种达到7种;

2017年9月,依图医疗表示,浙江省人民医院作为依图医疗的首批合作医院,从上线至今,AI系统一共辅助医生诊阅1.7万名患者图像,被采纳率为90%;

在全球各个地方,医疗人工智能发展到今天,已经不是仅仅是一种创新的概念,基于人工智能技术研发的各种产品已经切切实实的为医生、患者、企业、医疗机构提供服务。

各个国家和地区看到人工智能的巨大前景,纷纷出台政策、投入资金加快布局速度。人们戏称人工智能的“军备竞赛”悄然来临。在全球的各个国家和地区中,美国、中国、欧洲是在医疗人工智能表现最抢眼的三个区域。

文无第一、武无第二,动脉网从医疗应用的角度梳理一下这三个区域的医疗人工智能发展现状,看看谁才是医疗人工智能领域的领跑者。

人才

前不久,CSRankings.org以全球各大院校在计算机科学各领域顶级会议发表的论文数量为依据,评选出了世界范围内、亚洲范围内、美国以及欧洲的高校排名情况。

第12篇

关键词:人工智能;教学改革;教学方法

引言

人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。

1、教学现状与问题

作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。

2、管理类人才的人工智能课程教学改进策略

课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。

2.1教学方法改进

教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。

2.2教学内容设置

世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。

第13篇

关键词:人工智能技术;电力系统;继电保护

中图分类号:F407.61 文献标识码:A 文章编号:

1暂态保护

随着对人工智能技术在继电保护领域的深人研究,相继出现了用人工神经网络来实现故障类型的判别、故障距离的确定、方向保护、主设备保护;用小波理论的数学手段分析故障产生信号的整个频带的信息并用于实现故障检测。这些人工智能技术不仅为提高故障判别精确度提供了手段,而且能够使一些基于单一工频信号的传统算法难以识别的间题得到解决。然而目前为止,人工智能的应用还没有能够提供取代传统保护的新的原理,而且这些方法的应用同样受传感器频宽的限制,其结果往往是通过复杂的计算和繁琐的工作只能换取故障识别的准确度或可靠性的一点提高。通过检测故障暂态产生的高频信号来实现传输线及电力设备等的保护:“是新一代的电力系统继电保护思想,简称“暂态保护”。故障暂态产生的信号中含有大量的信息,其中包括故障的类型、方向、位置、持续时间等。这些信息贯穿于信号的整个频域,从直流、工频到高频。在基于工频的传统保护方式中,故障产生的高频量被当作于扰滤掉,大量的研究工作用在设计滤掉高频信号的滤波器上。“暂态保护”首先通过特殊设计的高频检测装置及算法来从故障暂态中提取所需的高频信号,利用专门设计的快速信号处理算法来判断故障。微处理机技术的发展使得暂态保护的实现成为可能。

摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。提出拥有限脉冲相应(finiteimpulseresponse)ANN构造单相和三相变压器的差动保护,这种ANN模型适于处理瞬时信号,研究了3种结构:第一种用于检测单相变压器的内部故障;第2种用于检测三相变压器的内部故障;第3种由一组第1种结构的ANN组成,用于检测三相变压器的内部故障。在分析BP算法缺点的基础上,提出了一种变结构神经网络的最大值算法,通过简化训练过程,加快网络收敛和诊断推理速度,从而提高故障识别率,实现故障的自动诊断和智能化综合保护。需要指出,神经网络方法虽然有利于克服专家系统的知识获取瓶颈、知识库维护困难等问题,但它不适于处理启发性知识。而且,由于ANN技术本身不够完备,它的学习速度慢,训练时间长以及解释功能弱,从而影响了神经网络的实用化。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。天津大学从1996年起进行神经网络式继电保护的研究,已取得初步成果。

3人工神经网络型继电保护

人工神经网络(ANN)是模拟人脑组织结构和人类认知过程的信息处理系统。早在1943年,已由心理学家WarrenS.Meeulloeh和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起〔,飞。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法),它的网络结构及算法直观、简单,在工业领域中应用较多。对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统继电保护中的应用具有很大的潜力,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如在输电线两侧系统电势角度

4模糊理论

1965年,美国学者L.A.Zadeh在“Informatio-nandConirol’,上首先提出了模糊集合的概念,其论文“FuzzySets”开创了模糊数学及其应用的新纪元。在模糊理论发展的初期,它在电力系统中的应用是十分有限的,这主要是因为电力系统的工程师首先考虑的是电力系统的可靠性,对模糊逻辑还持有怀疑态度。但随着这一理论的不断发展完善,它在电力系统中的应用领域也越来越广泛,华北电力大学杨奇逊教授提出在特征层次上模拟人脑识别事物的方法来识别电气量的特征。人类认识事物的过程是在特征层次上对事物进行分类和识别,并不需要复杂、精确的计算。模糊模式识别为进行这类特征识别提供了有效的工具。微机保护正是在这一点上模拟人类识别事物的特征,辨别和区分不同的对象,最终通过原理上的智能化实现更高的性能。用模糊理论构造变压器保护原理,以区别内部故障、涌流、过激以及电流互感器饱和情况下的外部故障。选取变压器原、副边的电流为特征量,根据EMTP程序得到的仿真结果,采用统计方法得到模糊规则。之后,采用DemPster一Shafer证据理论对模糊规则进行处理,得到最终结果。基于模糊理论设计一种序分量高压线路保护选相元件。目前华北电力大学研制成功应用模糊理论的高压线路保护一套,现已通过鉴定,并批量投人运行。然而,在模糊理论中,由于隶属度的获取,复杂系统的模糊模型的建立、辨识,语言规则的获取、遗忘、修改等理论和方法还不够完善,使该理论的应用受到了限制。从目前情况来看,将模糊集理论与人工智能中的专家系统、神经网络等相结合不失为解决这一困难的好方法。

5小波分析

小波分析是一种崭新的时频分析方法,具有良好的时频局部化特性和对信号自适应、“变焦距”多尺度分析能力,适合于对非平稳信号的处理。小波分析是Fourier变换的突破性进展,并发展了窗Fourier变换的局部化思想,它的窗宽随频率增高而缩小,符合高频信号的分辨率较高的要求。小波分析的主要特点之一是具有用多重分辨率来刻划信号局部特性的能力,从而它很适合探测在正常信号中出现的瞬态反常现象并展示其成分。建立了电压行波的故障特征和小波变换模极大值之间的联系,为构造性能优良、可靠的行波测距和行波保护奠定了重要的数学基础。提出一种用小波理论区分变压器励磁涌流和短路电流的新原理。华北电力大学杨奇逊、刘万顺教授提出利用小波理论进行特征提取,利用模糊集方法区分变压器励磁涌流和故障的新方法。该方法通过小波变换的模极大值的符号特征来提取励磁涌流的间断角特征,这种从定量到定性的识别方法为研制新型的变压器保护提供了一种较先进的新原理。采用小波变换对故障后的暂态现象进行分析,以快速识别故障类型,可用于高速保护。提出用小波变换和ANN检测变压器故障。先用EMTP程序产生变压器在正常运行和故障时的信号(主要是电流信号),之后用小波变换进行处理,提取特征量,最后用ANN进行训练和估计。通过应用小波变换提取重要的特征量,ANN的结构得以简化,训练速度得到提高。

6结束语

随着人工智能技术的不断发展,新的方法也在不断涌现,在电力系统继电保护中的应用范围也在不断扩大,为继电保护的发展注人了新的活力。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。虽然上述智能方法在电力系统继电保护中应用取得了一些成果,但这些理论本身还不是很成熟,需要进一步完善,而且某些应用还只是处于探讨和实验阶段,距离工程实际还有差距,因此无论是在理论研究还是工程应用方面都还有很多工作要做。随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

参考文献:

[1] 陈斌.人工智能技术在继电保护中的应用与发展[J]. 广东科技. 2009(22)

[2] 张梓奇,苏健祥.人工智能技术在电力系统中的应用探讨[J]. 科技资讯. 2007(21)

第14篇

>> 研究生人工智能系列课程教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能实验课教学改革研究 人工智能课程全英文教学改革 创新型人工智能教学改革与实践 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 面向人工智能的信息管理与信息系统专业教学改革 人工智能课程教学方法研究 人工智能的应用研究 日本巨资扶持人工智能研究 人工智能系列课程研究 高中人工智能教学初探 《人工智能》双语教学初索 人工智能双语教学建设 人工智能实验教学探讨 “人工智能”之父 人工智能 AI人工智能 常见问题解答 当前所在位置:l(美国人工智能协会)、caiac.ca/(加拿大人工智能协会)等,它们包括了学科前沿动态、讨论交流及大量的代码资源等。通过使用这些资源,学员可及时了解人工智能最新发展动态,进行人工智能程序设计的交流及对一些问题进行较为深入的探讨。

2教学方法研究

研究生教学应更突出学生的主体地位,注重发挥其学习的主动性和自觉性,为此,课程组结合课程特点,在教学方法进行了如下探索。

2.1加强教学设计

教学设计就是对教学活动进行系统计划的过程, 是教什么(课程内容)及怎么教(组织、方法、策略、手段及其他传媒工具的使用等)的过程[2]。在教学过程中,每节课授课前,坚持集体备课的原则,由课程组集体讨论选定授课内容,补充阅读文献,根据授课对象与课程内容特点,确定课堂组织方式,采用的授课方式以研讨式教学为主,给合讲授、实验、自学等。

2.2抓好课堂教学环节

教学方法与教学手段是保证课堂教学效果的关键。本课程授课对象主要为硕士研究生,他们的接受能力较强,有一定的求知欲。由于学员人数较少,授课方式可灵活组织。教室有完备的多媒体设备,基本的软件实验环境,教学过程可采用灵活教学方法、多种教学手段,提高教学效率,保证授课质量。

1) 以研讨式为主的教学方式。研究生教学应坚持学术研究为导向,发挥学员在学习过程中的主动性和自觉性。由于研究生学员有一定的学习基础与自学能力,教员可以在课前给学员布置预习内容,学员通过查阅资料、分析整理进而形成自己的观点,使在课堂教学中师生互动交流成为可能,改变传统的教员讲,学员听的灌输式教学方式。研讨式教学也有力于培养学员积极思考、创新思维的习惯与能力。

2) 教学手段的信息化。人工智能原理教学一个突出矛盾是知识点多、内容抽象、理论性强,但学时较少,因此,必须发挥现代教学手段的作用,提高教学效率。为此,课程组对每节课都精心设计了教学课件,课堂教学中以课件为主,辅以板书,充分利用多媒体信息量大、直观等优点,改善教学效果;引入教学声像资料,便于学员课下学习;设计演示程序,使部分比较抽象、不易于理解的内容,如子句归结、搜索策略更形象直观,易于学习和掌握。

3注重培养学员学术研究能力

学术能力是指专门对某一学问进行系统的哲理或理论研究的能力,它不仅包括思辨的方面,还包括实践及感性的敏感力等方面。研究生阶段学习的一个突出特点是要求学习的主体――研究生必须具备研究的能力[3]。论文写作是培养、锻炼、提高研究生的学术能力的重要途径,在教学实施过程中,要求每个专题学习结束后,都要提交一份格式符合期刊发表要求的总结报告,题目可自行选定,也可由教员指定;内容既可以是人工智能该专题某一算法的实现,也可以是对某一问题的进一步研究,或者是对该专题最新研究进展的综述。教员重点在以下几个方面予以指导。

1) 选题准确。要求选题不能过于宏大,应以小题目反映大问题,具有一定的可研究性为宜。

2) 研究内容。研究目标明确,方法恰当,能够提出自己的见解,所提观点正确。

3) 论文结构。结构清晰、完整,论述严谨,表达规范。

4) 占有文献丰富。撰写过程中要有意识培养学员查阅科技文献的能力,要求查阅反映最新研究成果的权威文献。

4加强实验环节教学

人工智能教学在进行各种理论知识讲授的同时,还应重视实践教学,把抽象的知识转化为形象、直观的实验,让学员真正理解人工智能的概念、本质、研究目标,从而提高学员多角度思维的能力和逻辑推理能力,进一步了解信息技术、计算机技术发展的前沿,培养他们对人工智能研究的兴趣,激发对人工智能技术未来的追求。为此,课程组借鉴国内外知名大学人工智能实验教学经验,编写了《人工智能原理实验指导书》,围绕问题表示、经典逻辑推理、不确定推理、搜索策略及简单专家系统实现等教学内容提供了7组实验供学员选择。

例如,在状态空间搜索一节教学过程中,先完成理论部分的教学,使学员对状态空间基本概念、问题表示及求解方法有一个准确的认识,然后进行实验教学。由学员自主完成重排九宫问题求解的程序,初始状态和目标状态如图1所示,调整的规则是,每次只能将与空格(左、上、下、右)相邻的一个数字平移到空格中[4]。实验过程重点指导学员掌握状态空间进行问题求解的关键步骤:问题表示和搜索策略。问题表示就是要确定该问题的基本信息及程序实现的数据结构,基本信息有初始状态集合、操作符集合、目标检测及路径费用函数,数据结构可采用向量、链表等形式;搜索策略可分为盲目式搜索和启发式搜索,可按照先易后难的原则,先实现盲目搜索中的广度优先及深度优先搜索,在此基础上再定义估价函数实现启发式搜索。而在启发式搜索实现过程中,又可以通过定义不同的启发函数:如某状态格局与目标节点格局不相同的牌数、不在目标位置的牌距目标位置的距离之和等加以比较,准确理解启发函数的意义。通过实验,学员加深了对课堂讲授的理论知识的理解,能够熟练地将状态空间法运用于实际问题的求解,提高了工程实践能力。

实验教学组织方式可根据具体的实验内容特点,采用上机编程实验、演示程序验证、模拟平台开发、分组讨论等多种形式进行。

5适度开展双语教学

研究生的英语基础普遍较好,基本都通过了国家公共英语四级考试,部分学员通过了六级考试,加之在本科阶段还开设了专业英语课程,因此,在培养研究生人工智能知识的同时,我们要提高学员阅读原版英文资料、用英语进行简单科技写作及对外学术交流的能力,适度开展双语教学,对此,我们可采取以下基本方式。

1) 专业术语全部用英语表示。

在教学过程中用英语表达人工智能原理中的专业术语和主要概念,如Knowledge Representation(知识表示)、Depth-First Search(深度优先搜索)、Breadth- First Search(广度优先搜索)等。

2) 以英文原版教材为教学参考书。

选定机械工业出版社出版的《Artificial Intelligence Structures and Strategies for Complex Problem Solving》为参考书,该书“是人工智能课程的完美补充。它既能给读者以历史的观点,又给出所有技术的实用指南[5]。”

3) 加强英文文献的阅读。

在课程论文撰写时,要求阅读一定数量的外文文献;在讨论课中,鼓励学员使用英语进行讨论。

经过课程学习,学员都能准确掌握人工智能学科专业词汇,英文运用能力得到一定提高,能较自如地阅读原版英文专业资料,为进一步用英文进行学术交流及学术论文写作打下基础。

6考试与成绩评定改革

考核方式采用传统的试卷与课程论文、实践环节等三部分组成,全面考查学员对基础理论知识掌握情况以及理论联系实际的能力,其中试卷占70%,课程论文占10%,实践环节占20%。课程论文题目不作限制,由学员在课程学习阶段结合某一专题选定题目,课程论文以选题意义、研究内容、论文结构、参考文献及撰写规范等指标为评价依据;实验成绩采用实验过程考查、实验结果验收和实验报告评阅相结合的考核方法,综合评定。这样做不但考核了学员人工智能基本理论掌握情况,也反映了学员的学术研究能力和工程实践能力。同时,考核结合实际教学进程,改变了单一课终总结性考核的弊端。

7结语

经过课程组近两年的教学方法研究与教学实践,研究生人工智能原理课程教学收到较好的效果,但仍存在一些问题,如在课堂讨论环节,个别学员准备不充分、讨论不够深入;课程论文撰写选题随意,文献综述不够全面、准确,论文格式不够规范等。在今后的授课中,课程组将根据授课研究生人数较少的特点,采取明确每名学员预习重点、加强课程论文交流等方式予以改进,力求取得更好的教学效果。同时,进一步充分利用便利的校园网平台,开展“人工智能原理”网络课程建设,购买或自主开发网络教学资源,引导学员利用网络资源进行个性化自主学习,增强教学过程的信息化程度。

参考文献:

[1] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社,2002:1.

[2] 李志厚. 国外教学设计研究现状与发展趋势[J]. 外国教育研究,1998(1):6-10.

[3] 肖川,胡乐乐. 论研究生学术能力的培养[J]. 学位与研究生教育,2006(9):1-5.

[4] 周金海. 人工智能学习辅导与实验指导[M]. 北京:清华大学出版社,2008:204.

[5] George F.Luger.Artificial Intelligence Structures and Strategies for Complex Problem Solving[M].北京:机械工业出版社,2009:754.

Reform on Postgradrates Artificial Intelligence Course Teaching

TAN Yuehui, QI Jianfeng, WANG Hongsheng, LI Xiongwei

(Department of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)

第15篇

关键词:人工智能 电气 自动化控制

人类智能主要要包括三个力面,即感知能力,思维能力,行为能力,而人工智能是指由人类制造出来的“机器”所表现出来的智能。人工智能主要包括感知能力、思维能力和行为能力。

1.人工智能应用理论分析

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是门边沿学科,属于自然科学和社会科学的交叉。涉及哲学和认知科学、数学、心理学、计算机科学、控制论、不定性论,其研究范畴为自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法等,应用于智能控制,机器人学,语言和图像理解,遗传编程。

当今社会,计算机技术已经渗透到生产和生活的方方面面,计算机编程技术的日新月异催生自动化生产、运输、传播的快速发展。人脑是最精密的机器,编程也不过是简单的模仿人脑的收集、分析、交换、处理、回馈,所以模仿模拟人脑的机能将是实现自动化的主要途径。电气自动化控制是增强生产、流通、交换、分配等关键一环,实现自动化,就等于减少了人力资本投入,并提高了运作的效率。

2.人工智能控制器的优势

不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下

(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素。例如:参数变化,非线性时,往往不知道。)

(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍。

(3)它们比古典控制器的调节容易。

(4)在没有必须专家知识时,通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。论文格式,自动化控制。

(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。论文格式,自动化控制。。现在没有使用人工智能的控制算法对特定对象控制效果非常好,但对其他控制对象效果就不会一致性地好,因此对具体对象必须具体设计。

3.人工智能的应用现状

(1)优化设计电气设备的设计是一项复杂的工作,它不仅要应用电路、电磁场、电机电器等学科的知识,还要大量运用设计中的经验性知识。传统的产品设计是采用简单的实验手段和根据经验用手工的方式进行的。因此,很难获得最优方案。随着计算机技术的发展,电气产品的设计从手工逐渐转向计算机辅助设计(CAD),大大缩短了产品开发周期。人工智能的引进,使传统的CAD技术如虎添翼,产品设计的效率及质量得到全面提高。

用于优化设计的人工智能技术主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,非常适合于产品优化设计,因此电气产品人工智能优化设计大部分采用此种方法或其改进方法。

(2)智能控制的功能实现

①数据采集与处理:对所有开关量、模拟量的实时采集,并能按要求处理或存贮。

②画面显示:模拟画面真实显示一次设备和系统的运行状态,可实时显示电流、电压等所有模拟量、计算量、隔离开关、断路器等实际开关状态及挂牌检修功能,能生成历史趋势图。

③运行监视:具有对各主要设备的模拟量数值、开关量状态的实时智能监视,有事故报警越限和状态变化事件报警,事件顺序记录、声光、语音、电话图象报警。

④操作控制:通过键盘或鼠标实现对断路器及电动隔离开关的控制,励磁电流的调整。按顺控程序进行同期并网带负荷或停机操作。系统对运行人员的操作权限加以限制,以适应各级运行值班管理。

⑤故障录波:模拟量故障录波,波形捕捉,开关量变位,顺序记录等(包括主要辅机)。论文格式,自动化控制。。

⑥在线分析:不对称运行分析、负序量计算等。

⑦在线参数设定及修改:保护定值包括软压板的投退。

⑧运行管理:操作票专家系统,运行日志,报表的生成及存储或打印,运行曲线等。

人工智能控制技术在自动控制领域的研究与应用已广泛展开,但在电气设备控制领域所见报道不多。可用于控制的人工智能方法主要有3种:模糊控制、神经网络控制、专家系统控制。

4.恒压供水案例简析

恒压供水在工业和民用供水系统中已普遍使用,由于系统的负荷变化的不确定性,采用传统的PID算法实现压力控制的动态特性指标很难收到理想的效果。在恒压供水自动化控制系统的设计初期曾采用多种进口的调节器,系统的动态特性指标总是不稳定,通过实际应用中的对比发现,应用模糊控制理论形成的控制方案在恒压系统中有较好的效果。在实施过程中选用了AI 一808人工智能调节器作为主控制器,结合FXIN PLC逻辑控制功能很好地实现了水厂的全自动化恒压供水。对于单独采用PLC实现压力和逻辑控制方案,由于PLC的运算能力不足编写一个完善的模糊控制算法比较困难,而且参数的调整也比较麻烦,所以所提出的方案具有较高的性价比。

本案例中只是一个人工智能在电气自动化中的一个小小的应用,也是电气元

件生产供给的一个方向,实现机械智能化是我们努力的追求,将人工智能的先进的最新成果应用于电气自动化控制的实践是一个诱人的课题。

人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能完成的复杂的工作,电气自动化是研究与电气工程有关的系统运行。人工智能主要包括感知能力、思维能力和行为能力,人工智能的应用体现在问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器人学等方面。而这诸多方面都体现了一个自动化的特征,表达了一个共同的主题,即提高机械的人类意识能力,强化控制自动化。因此人工智能在电气自动化领域将会大有作为,电气自动化控制也需要人工智能的参与。

参考文献: