本站小编为你精心准备了领域知识数据挖掘论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1顾客价值需求域本体
在当前的发展过程中,所谓的本体,即通过对概念对象及相互间的关联形成的表达方式,并借此对某领域知识模型或语义信息的描述,基于其本体具有较强的形式化能力,除此之外,亦有利用逻辑推理获取概念间逻辑关系的能力,使其得到的各个领域的广泛应用,诸如信息检索、知识工程、Web上异构信息的处理以及软件复用等等,采用本体建模技术,并以现实生活中顾客价值需求及行为理论为为基础,进而完成了对领域本体和任务本体的建立。
1.1领域本体对特定专业领域中的概念及之间关系的描述,即为领域本体,它是对一个应用领域的描述,具体来说,分为本体知识库和领域本体模式两种成分,进而描述特定的领域知识和信息,即为领域本体模式,此外,模式描述了应用领域的知识构成或静态信息。而所谓的顾客价值需求领域本体,描述的是逻辑关系、描述的对象是顾客价值需求目标概念机需求行为概念,明确则是指概念及约束是显式的定义,基于其具有计算机刻度的特点,构成了形式化,研究目的将领域体原语定义的具体情况如下:定义一:顾客价值需求领域本体的概念构成,Concerpts={Concerpts1,Concerpts2,Concerpts3},式中,顾客机制需求特性概念用Concerpts1表示,顾客的价值需求决策行为概念用Concerpts2表示,如环境约束分析、方略设计、实施等;顾客的基本特征概念则用Concerpts3表示。定义二:顾客价值需求领域本体形式化为三元组:ODomain={Concerpts,Relations,Instances},式中,领域概念的集合用Concerpts表示,领域概念间的关系集合用Relations表示,而ODomain为领域本体,本体实例的集合则用Instances表示,形成三元组。定义三:顾客价值需求领域本体的关系集合表示的是概念集合中各个概念之间的关系,具体数来,表现为n维笛卡尔积的子集。关系集合中存在5种关系,有Part-of:某个概念是另一个概念的属性。Means-end:不同需求概念之间因果解构关系。Subclass-of:概念之间的继承关系。Drive-adjust:不同需求概念之间因果解构关系。Attibute-of:某个概念是另一一个概念属性。也就是行为感知影响目标调整,且目标驱动行为,二者关系密切。定义四:领域模式在应用域的实例,即顾客价值需求领域本体的实例。如“大学生的移动产品需求”本体、“政府顾客的移动产品需求”本体等。
1.2任务本体对特定任务或行为求解方法的描述即为任务本体,对其的设计,应当以顾客需求管理领域决策信息及问题的需求为基础,有文献指出,顾客吸引、识别、保持及发展,为顾客生命周期管理涉及到的4个管理主题,如表1所示,也包括了上述主题的决策分析问题。综合数据挖掘的任务来看,其囊括了一个或多个挖掘子任务、挖掘算法等,结合本次研究,实施了对该领域的任务本体原语定义的设计,如下:OTaske=(Taskea,Inputsa,Methodsa,Outputsa)上式中,挖掘任务本体用OTaske表示;α管理主题下Taskea挖掘任务的输出变量用Inputsa表示,如兴趣参量、聚类变量、规则前、后件变量;α管理主题下的挖掘任务用Taskea,如顾客细分以及需求特征描述等;挖掘结果输出表达形式或格式用Outputsa表示,如聚类中心、“类”聚类变量均值、“类”样本数等;挖掘方法用Methodsa表示,如K-means聚类。另外,α∈(识别顾客,吸引、保留和发展顾客)共同构成了任务本体。
2对本体下顾客需求数据挖掘过程的改进
结合现实发展中的相关问题,在本体的顾客需求数据挖掘过程的改进方面,主要体现了挖掘目和任务、方法的选择及确定及数据源转化、约束参数的选择等。这种方式下,对目标的搜索范围进行了有效的缩小,进而在此基础上提高了挖掘质量和效率,如图1所示。
2.1支持管理决策的挖掘任务首先要进行的是对数据挖掘任务和目标的确定,基于操作中验证或探索可支持实际管理决策的信息结构,具有较大的价值,其知识内容包括了规则、规律、模式及关系等,结合文中研究主题,依据顾客需求相应决策问题来进行具体数据挖掘任务的设置,在对挖掘任务和目标的完善方面,有效地结合了领域知识的本体模型。在对应概念及关系语义匹配方面,根据该领域需求目标、行为信息的本体模型来进行,继而确定本次数据挖掘任务。
2.2挖掘数据空间及预处理在具体的实施过程中,以数据挖掘任务和领域本体模型为基础,指导完成数据集成、选择以及预处理3个环节,这便是挖掘数据空间及预处理,细分有以下内容:(1)提取、归并处理多数据库运行环境中顾客数据,以及遗漏和洗清脏数据等;(2)基于数据来进行数据的选择方面的需求,应依据数据挖掘任务需要分析的数据来实施,进而有效减少了不相关或冗余的属性,也得到了符合约束的数据挖掘有限数据基,实现了数据挖掘搜索效率的有效提高,使得相关属性或遗漏等现象得到了有效避免;(3)基于顾客“需求行为”领域本体的概念语义即为预处理,旨在检查转载的数据,确保其合法性,并及时修正其中的错误,预处理其中的异常数据。
2.3挖掘方法算法及执行流程依据本次研究的需要,在具体的执行过程中,设定先明确数据挖掘的任务和目的,详细可分为验证性、探索性挖两种,前者由用户事先给定假设,继而在挖掘中发现蕴含的某些规则或规律,对所做的假设进行验证;其次,对操作过程中的挖掘方法和算法进行确定,而挖掘方法和感兴趣参数的设置则要根据挖掘任务来进行,如表1所示;最后,确定挖掘结果的表达方式,一般有神经网络、树结构以及规则(模板)等[6]。
2.4评价挖掘结果作为整个实施过程的最后一个环节,对于挖掘结果的评价和诠释,对于整个操作过程具有十分重要的意义,在具体的评价过程中,不能有违背领域本体知识的行为,并要及时参与领域本体的概念关系,且还要采取相应的方法来提高综合评价的有效性,如置信度、支持度以及兴趣度等等,在必要的情况下,实施方应当反馈调整参数或约束等,继而形成对用户感兴趣知识的重新挖掘,对其进行完善,基于本体用严格的逻辑语言表述过程中产生的新知识,需及时在实践过程中的检验与完善,使得整个过程具有较高的可信度,收到良好的执行效益。
3结语
新时期社会发展的大背景下,作为顾客知识获取研究的重要的内容之一,顾客需求数据挖掘有效性的改进有着十分重要的意义,因为当前发展中日趋突出的影响挖掘质量和效率的问题,运用顾客价值需求及行为理论,在广泛研究取材的基础上,提出了一种数据挖掘改进方法,其以先验性知识本体为依据,进而完善了对全面辨识和揭示顾客需求的先验知识框架的建立,以期能为企业有效获取顾客需求轮廓知识等方面提供有益的参考,进而实现顾客需求知识共享。
作者:张轶辉单位:中南林业科技大学