本站小编为你精心准备了试验钢热处理工艺论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1实验方法
用50kg中频感应电炉熔炼,金属炉料的加料顺序为:废钢、生铁,镍板、钼铁、铬铁、硅铁、锰铁,最后加铝进行终脱氧。合金熔炼温度为1500—1550℃,浇注温度1450—1500℃,稀土变质剂在炉外包中加入。钢液出炉后快速浇注成Y型试样。试验钢的化学成分见表1。性能试样均在Y型试块上截取,冲击试样采用10mm×10mm×55mm的无缺口标准试样,在JB-5型摆锤式冲击试验机上进行室温冲击韧性试验,每组试验数据均取其3根试样的平均值。硬度测试在HR-150A洛氏硬度计上进行,每块试样测3—5个点,取其平均值。采用光学显微镜和JSM-5610LV扫描电镜来观察试样的断口形貌和金相组织。
2实验结果及分析
2.1试样的铸态组织图1为18Cr23MoVRE铸钢试样组织的扫描图片。由图1可知,18Cr23MoVRE铸钢试样的铸态组织由珠光体和少量片状马氏体+碳化物组成,晶粒粗大,碳化物呈块状、团球状和连续网状沿晶界分布。这主要是因为结晶过程中,先结晶的晶粒内合金元素含量较低,富裕的合金元素被推至结晶前沿,导致这些合金元素在结晶前沿富集,当这些合金元素达到一定的浓度时,在晶粒间形成碳化物,并沿晶界连续分布,如图1(a)所示。当18Cr23MoVRE铸钢经950℃淬火+300℃回火处理后,其组织为回火马氏体+碳化物,见图1(b),碳化物以短杆状、块状和菊花状沿晶界断续分布,马氏体基体得到细化,网状碳化物分布得到明显改善。随淬火温度的提高,颗粒状碳化物增多,基体晶粒粗化,细碳化物颗粒弥散分布于基体上,见图1(c)。当淬火温度达到1050℃时,马氏体基体和碳化物明显粗化,晶内细颗粒状碳化物增多,见图1(d)。因为在热处理温度下,晶界碳化物不断扩散进入基体晶粒内部,晶界碳化物减少,碳化物网被打破,淬火时这些溶入基体的合金元素来不及析出,被过饱和固溶于马氏体基体内,回火过程中,溶入马氏体内的合金元素以细颗粒碳化物的形式弥散均匀析出在基体上,改善了钢中碳化物的分布,热处理温度提高,热处理后钢的晶粒越粗大。可见,合理的热处理工艺可以改善钢的组织和碳化物分布。
2.2试验钢的力学性能18Cr23MoVRE耐磨铸钢试样经不同温度淬火+300℃回火热处理后的力学性能见图2。由图2可以看出,铸态18Cr23MoVRE耐磨铸钢的硬度值最小,为HRC44,随着淬火温度的升高,18Cr23MoVRE耐磨铸钢的硬度提高。当淬火温度升高至1000℃时,18Cr23MoVRE耐磨铸钢的硬度升至最高,达到HRC58.5,继续提高淬火温度至1050℃时,18Cr23MoVRE耐磨铸钢的硬度略有下降,为HRC58。可见,适当提高淬火温度,对18Cr23MoVRE耐磨铸钢硬度的改善有益,但淬火温度不宜过高。淬火之所以能提高18Cr23MoVRE耐磨铸钢的硬度,主要是因为提高淬火温度,有更多的碳原子及合金元素溶于奥氏体,淬火后马氏体中碳和合金元素的过饱和度增加,加剧了马氏体晶格畸变,固溶强化作用增大,从而提高了材料的硬度。从图2还可以看出,淬火温度对18Cr23MoVRE耐磨铸钢的冲击韧性也有一定的影响,铸态18Cr23MoVRE耐磨铸钢的冲击韧性为4.6J,相对较低;随着淬火温度的升高,18Cr23MoVRE耐磨铸钢的冲击韧性逐渐升高,当淬火温度达到1000℃时,18Cr23MoVRE耐磨铸钢的冲击韧性达到了5.8J;再升高淬火温度,18Cr23MoVRE耐磨铸钢的冲击韧性有降低的趋势。这主要是因为铸态18Cr23MoVRE耐磨铸钢组织是不均匀的,存在成分偏析,那些高碳高合金微区韧性往往较差,在热处理过程中,高碳高合金微区的元素在高温下向低碳低合金微区扩散,钢的成分、组织和韧性得到改善。当淬火温度较高时,由于晶粒长大使钢的组织粗大,脆性增加。因此,适当的热处理可提高18Cr23MoVRE耐磨铸钢的性能,以1000℃淬火+300℃回火最佳。
3结论
(1)18Cr23MoVRE耐磨铸钢的铸态组织粗大,碳化物呈网状沿晶界分布,热处理能够改善18Cr23MoVRE耐磨铸钢的组织、碳化物形态及分布。(2)热处理温度提高,18Cr23MoVRE耐磨铸钢的组织细化,碳化物由网状分布转变为断续网状分布,钢的硬度和冲击韧性提高,热处理温度超过1000℃后,试验钢的性能有所下降。(3)18Cr23MoVRE耐磨铸钢的理想热处理工艺为1000℃淬火+300℃回火,在此热处理工艺下,18Cr23MoVRE耐磨钢的硬度达到HRC58.5,冲击韧性达到5.8J。
作者:王宏波李婧涵李景韬单位:洛阳中重发电设备有限责任公司西安交通大学洛阳中重运输有限责任公司