本站小编为你精心准备了聚苯胺纳米材料的制备与表征参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
导电聚苯胺以其较高的电导率、良好的稳定性以及单体廉价易得、合成简单、具有独特的掺杂/脱掺杂机理等优点,一直是导电高分子材料的研究热点[1],并且在电磁屏蔽、太阳能电池、超级电容器[4]、化学传感器[5]、防腐蚀[6]、气体分离及催化等方面有着广阔的应用前景.聚苯胺的合成方法有很多,如乳液聚合法、微乳液聚合法、模板浸渍法、界面聚合法、快速混合法、电化学聚合法等,其中快速混合法是在掺杂剂存在的条件下,将含有苯胺的溶液与含有氧化剂的溶液快速混合,这种方法不仅操作简便、工艺简单、条件温和,而且能够防止由于氧化剂的浓度不均匀和苯胺聚合的自催化作用引起的聚合不均匀现象[10].本文以对甲苯磺酸为掺杂酸,以苯胺为单体,过硫酸铵为氧化剂,在水溶液中进行苯胺的单体氧化聚合,通过控制n(掺杂酸)/n(单体),合成不同掺杂比例的聚苯胺.通过测试不同掺杂比例的聚苯胺的导电性能,确定最优的对甲苯磺酸掺杂量.
1实验方法
1.1试剂与仪器苯胺(An),AR,天津市大茂化学试剂厂;过硫酸铵(APS),AR,天津市科密欧化学试剂有限公司;对甲苯磺酸(APS),AR,天津市大茂化学试剂厂;乙醇,AR,天津市恒兴化学试剂制造有限公司;去离子水.苯胺单体使用前经一次减压蒸馏,其他试剂未经处理直接使用.
1.2合成方法酸掺杂PANI的合成方法:取蒸馏后的苯胺单体0.54mL和20mL不同浓度的对甲苯磺酸配置成混合溶液A,再配置1.37g过硫酸铵和20mL不同浓度的对甲苯磺酸的混合溶液B,将B溶液直接倒入A溶液中,室温下闭口静置,反应8h.将所得混合溶液抽滤,所得沉淀即为聚苯胺粗产品.分别用去离子水和无水乙醇洗涤聚苯胺粗产品数次至洗脱液呈无色且pH中性,通风干燥箱中85℃干燥24h后取出,研磨得样.本征态PANI的合成方法:将墨绿色的掺杂态聚苯胺用1.5mol/L的氨水浸泡过夜,次日抽滤,利用相同浓度的氨水洗涤数次,再用蒸馏水洗涤至滤液pH呈中性,85℃干燥后即得本征态的PANI.
1.3测试与表征聚苯胺结构用傅立叶变换红外光谱仪(FTIRspectra,Frentier,Perkinelmer公司),紫外可见光谱仪(UV–Visspectra,CARY-300,美国Varian公司),扫描电子显微镜(JSM-6360LV),数显电导率仪(DDS-11A).
2结果与讨论
2.1红外光谱分析图1和图2为本征态以及不同比例掺杂的聚苯胺的傅里叶变换红外光谱图,其中图1中掺杂态聚苯胺的掺杂比例为n(TSA)/n(An)=1.由图1和图2可知,本征态PANI分别在1588、1494、1301、1163和827cm-1附近特征吸收峰,分别依次对应聚苯胺链上醌式、苯式结构的骨架振动伸缩特征吸收峰,C-N的伸缩振动峰,N-Q-N(Q为醌环)的特征吸收峰,苯环中C-C弯曲振动特征吸收峰和醌环中的C-H的特征吸收峰.掺杂后的聚苯胺含有聚苯胺基本官能团的所特有的特征吸收峰,说明掺杂的对甲苯磺酸的聚苯胺保留着聚苯胺的基本结构.但掺杂后聚苯胺的红外特征吸收峰相对未掺杂的峰强明显减弱;另一方面,掺杂对甲苯磺酸后的聚苯胺和未掺杂的相比,聚苯胺的特征吸收峰向低波数分别移动了大约26、16、10、30、16cm-1波数,这充分说明掺杂剂的掺杂量对聚苯胺的结构有一定的影响.这可能是由于掺杂的对甲苯磺酸可能使得聚苯胺分子链中的电子云密度降低,降低了原子间的力常数,产生诱导效应.同时掺杂作用使得分子链中的电子的离域化作用增强,产生共轭效应.以上两种效应同时作用,使得聚苯胺的红外吸收峰向低波数发生了移动.
2.2紫外可见光谱分析图3为不同比例的对甲苯磺酸掺杂后的聚苯胺的紫外可见吸收光谱图.从图3中可以看出,未掺杂和掺杂对甲苯磺酸的聚苯胺均分别在330nm和627nm处出现了特征吸收峰,依次对应苯环的π-π*跃迁和醌环结构的特征吸收峰.掺杂对甲苯磺酸后的聚苯胺依然保留了聚苯胺的特征吸收峰,但本征态PANI的吸收峰由于掺杂发生了红移.其中当n(TSA)/n(An)=0.5时,掺杂后的聚苯胺与本征态相比,其特征峰从330nm红移至334nm,627nm红移至631nm,且峰强最强,峰宽加大.这可能是因为对甲苯磺酸掺杂后的聚苯胺分子链上电荷离域的更为充分,π电子更容易跃迁,跃迁时所需能量更低,有利于电荷的离域,形成共轭结构的程度提高,因此大大增强了聚苯胺材料的导电性能.
2.3对甲苯磺酸掺杂的聚苯胺的微观形貌分析图4是对甲苯磺酸掺杂后的聚苯胺扫描电镜图片.据报道[14],高浓度的强酸有利于聚苯胺纳米纤维的生成,中强酸和弱酸掺杂下即使酸的浓度很大也只产生纳米纤维和颗粒混合的聚苯胺.本研究掺杂酸选用的是对甲苯磺酸为强酸,且随着掺杂酸比例改变,掺杂态聚苯胺的形貌未出现大的改变,这主要和所加入酸的种类、酸度和浓度有关.本实验中对甲苯磺酸掺杂后的聚苯胺为片状结构,平均大小应在200~300nm左右.2.4掺杂聚苯胺的导电性能分析取一定量不同掺杂比例的聚苯胺材料,溶于20mL的N,N二甲基甲酰胺溶液中,静置隔夜后利用数显电导率仪测定其各自的电导率.图5为不同对甲苯磺酸的掺杂量对聚苯胺导电性能的影响,从图中可以看出,未掺杂酸的聚苯胺导电性能很差,而掺杂后的聚苯胺的电导率随着对甲苯磺酸掺杂量的增加呈先增大后减小的趋势.这是由于对甲苯磺酸在聚合过程中充当掺杂剂;适当增加对甲苯磺酸的量,聚苯胺链上的正电荷密度增加,有利于电导率的提高.而掺杂剂用量增加到一定程度以后,过量酸对聚合物主链上的正电荷有屏蔽作用,使正电荷密度降低,电导率呈下降趋势[15].从图中可知,当n(TSA)/n(An)=0.5时,掺杂后的聚苯胺导电率最高,可以达到0.27S/cm.因此n(TSA)/n(An)=0.5为对甲苯磺酸掺杂聚苯胺的最佳条件.
3结论
选用对甲苯磺酸作为掺杂酸,利用快速混合法制备了有机酸掺杂的聚苯胺,并对其化学结构、晶型结构进行了分析.红外分析结果证明有机酸对聚苯胺进行了成功掺杂.扫描电镜的结果表明对甲苯磺酸掺杂后的聚苯胺为片状结构,平均大小在200~300nm左右.通过改变苯胺与有机酸的比例,测试了不同掺杂酸浓度下聚苯胺的电导率,结果发现当n(TSA)/n(An)=0.5,酸掺杂的聚苯胺电导率达到最大值,其值为0.27S/cm.
作者:史雅琪 许芝 薛严冰 单位:大连交通大学 环境与化学工程学院 大连交通大学 电气信息学院