本站小编为你精心准备了绿色环保农林生物质发电参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
近年来,我国经济发展迅速,而作为经济发展的基础,能源消耗需求增长极其明显,煤炭供求关系紧张。同时,农村秸秆资源没有得到充分利用,不仅浪费了资源,同时也造成严重的空气污染。为此,国家将逐步关停能耗高、效率低、污染大的小火电机组。根据第一批关停计划,到2010年前,要关停装机规模534.55万千瓦的小火电机组。《可再生能源法》第十四条规定:电网企业应当与依法取得行政许可或者报送备案的可再生能源发电企业签订并网协议,全额收购其电网覆盖范围内可再生能源并网发电项目的上网电量,并为可再生能源发电提供上网服务。
(一)农业资源构成。农业生物质资源是指农业作物(包括能源植物),主要有以下两个部分构成:农业生产的废弃物,如农作物秸秆(玉米秸﹑高粱秸﹑麦秸﹑豆秸﹑棉秆和稻草等);农业加工业的废弃物,如稻壳、玉米芯、甘蔗渣、花生壳等。
我国是一个农业大国,可以利用的主要有两个方面:秸秆和农业加工废弃物。其中,秸秆的产量约为每年6.5亿吨,折合约3亿吨标准煤。稻壳重量约在稻谷重量的20%以上,由此可以推算出2005年我国谷物(包括稻谷、小麦、玉米)产量为37428.7万吨,其中稻谷产量为16065.6万吨,稻壳产量为3213.2万吨。另外,稻壳的热值为12560~14650kJ/kg。所以,稻壳在每年谷物处理过程中是一种不可忽视的能源。我国玉米的主要产区(2000千公顷以上)有河北、吉林、黑龙江、山东、河南。2005年玉米的产量为11583万吨,玉米芯的平均热值为14400kJ/kg。
(二)林业资源的构成。林业生物质资源包括森林生长和林业生产加工资源中所提供的能源,主要有以下三个部分构成:碳薪林、在森林抚育和间伐过程中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑等;林业副产品的废弃物(如果壳和果核等)。
林业生物质资源在我国农村能源中具有重要地位。林业生物质资源占农村能源总消费的21.2%,在丘陵、山区和林区等区域,这个比例高达50%以上。在2005年我国农村消耗林业生物质资源约为1.66亿吨标准煤。
在林业生产过程中,碳薪林是一种产量高而生长期短的生物质能资源,它主要可以缓解农村的燃料需求,减少对自然林木的砍伐从而减少对环境的破坏。我国幅员辽阔,有许多种不同的气候,因此我国树种资源也十分丰富,适合我国的碳薪林种类比较多。
林木伐区剩余物包括经过采伐、集材后遗留在地上的枝杈、梢头、灌木、枯倒木、被砸伤的树木、不够木材标准的遗弃材等。据不完全统计,每采伐100立方米的木材,剩余物约占30%,若利用率按55%计算,将会有1000多万立方米的剩余物可供加工利用,这也将会缓解我国森林资源紧缺和木材供需矛盾。
我国目前的水平,木材综合出材率(由立木到原木)为65%,我国的木材利用率(由原木到成品)为60%左右。故我国每年可以利用的林业生物质资源是巨大的。利用好这一块能源也具有很大的潜力。
(三)我国生物质压缩成型替代煤的前景。由于生物质通过气化、液化、固化可以转化为二次能源,分别为热量或电力、固体燃料(木炭或成型燃料)、液体燃料(生物柴油、生物原油、甲醇、乙醇和植物油等)和气体燃料(氢气、生物质燃气和沼气等)。
生物质压缩成型替代煤是利用木质素充当黏合剂将农业和林业生产中的废弃物压缩为成型燃料,提高其能源密度,是生物质预处理的一种方式。将松散的秸秆、树枝和木屑等农林废弃物挤压成固体燃料,能源密度相当于中等烟煤,可明显改善燃烧特性。在该领域中我国已拥有世界领先技术,为大规模燃烧利用生物质打下基础。
二、国内利用秸秆发电现况
国内利用秸秆发电情况大致分为秸秆掺烧发电、纯秸秆发电、利用城市垃圾和包括秸秆在内的农林废弃物发电三种情况。目前已开始启动的厂家、项目有江苏宝应协鑫生物质环保热电工程、华电国际十里泉发电厂、江苏国信新能源开发有限公司、盐城垃圾焚烧发电项目、晋州掺烧发电厂改造工程等。据了解这些单位依傍不同优势而掺烧不同材质的生物质,由于是自己摸索,虽已经过了一段时间的实际掺烧,但各自存在一些问题,正向深层次摸索。目前,真正利用秸秆压缩发电的国内还没有。
笔者走访了香港协鑫集团下属的江苏宝应协鑫生物质发电厂和盐城阜宁协鑫环保发电厂。这两家都已进行掺烧试验,试验证明秸秆掺烧对锅炉燃烧未产生不良影响,对锅炉效率,除尘器效率、飞灰可燃物、烟气排放未造成不良影响。
三、秸秆掺烧的技术可行性
笔者在秦皇岛及附近地区采集了10种生物质燃料,其编号见表1,压缩成型燃料的秸秆来自定州,并委托清华大学煤燃烧工程研究中心,对生物质秸秆压缩成型燃料的燃烧特性、污染物控制等进行研究。(表1)
试验结果表明:秸秆的发热量为3670~3890大卡,玉米骨子的发热量为3700大卡,果木枝条的发热量为4170大卡。各种生物质无论产自何地,几乎其成分和热值基本相近,发热量相当于中等烟煤。
清华大学得出这样的技术结论:
1、从实验数据来看,单一生物质燃烧主要集中于燃烧前期;而煤燃烧主要集中于燃烧后期。生物质与煤混烧的情况下,燃烧过程明显地分成两个燃烧阶段。在煤中掺入生物质后,可以改善煤的着火性能。在煤中加入生物质后,燃烧的最大速率有前移的趋势,同时可以获得更好的燃尽特性。生物质在燃烧过程中放热比较均匀。在煤中加入生物质后,可改善燃烧放热的分布状况,对燃烧前期的放热有增进作用。煤中加入生物质后,使得煤的燃烧最大速率有所增加,生物质的燃烧特性普遍较好。
2、通过不同比例的掺混成型秸秆燃烧,对于试验范围内,燃烧温度提高到1050OC时,均未发生结焦。
3、掺混10%~20%的成型秸秆的混合燃料,SO2排放较低,在不添加石灰石情况下,SO2排放可以控制在200ppm以内。
4、掺混10%~20%的成型秸秆的混合燃料,NOx排放可以控制在200ppm以内。
总之,在目前的循环流化床锅炉设备中,无需经过过多改动,利用秸秆压缩发电掺烧比例可达到20%在技术上是完全可行的。不仅可以减少煤的使用量降低燃料成本,掺烧生物质还可以起到助燃作用,提高锅炉燃烧室的温度,从而提高锅炉的热效率(北山电厂锅炉热效率在74%~77%),同时在降低飞灰可燃物(掺烧前为27%)、减少排渣带走的热损失(掺烧前为700大卡)上都能发挥效能。
四、经济可行性预测
考虑到秸秆的采购、储运、安全等方面因素,我们准备采取将粉碎、压缩设备分散到农户手中,由农民将秸秆压缩成型后再送到厂里掺烧的办法。以河北秦皇岛北山电厂拥有的一台装机容量为2.5万千瓦、二台1.22.5万千瓦的凝汽式火力发电机组为例:
1、掺烧对底渣物理热损失、未完全燃烧损失的改善以及对飞灰未完全燃烧损失的改善,以掺烧秸秆量为Xo=20%(重量比)考虑,效率总体可提高△?浊=2.49%。
2、考虑秸秆的热值Q1为3550~3800kcal/kg,煤的热值为Qo=3200kcal/kg(未考虑炉前煤损失),以及对效率的影响掺烧20%的秸秆,可以替代22.19%~25.64%的煤量。
3、秸秆压缩后到厂价格每吨可控制在150元(根据我们收集的数据按秸秆50元/吨、电费25元/吨、半径50公里的运费40元/吨、人工15元/吨、利润20元/吨计算),3200大卡原煤的到厂价格全年平均价格约为186元/吨。
国家已经明确提出了要构建节约型社会、节约型经济,转变实现增长方式。由于利用农、林废弃物发电属国家《再利用资源目录》范围,届时该项目可以在政府补贴、上网电价、税收等方面享受相关优惠政策,也使得秸秆掺烧项目更具发展前景。