美章网 资料文库 扭转效应在高层建筑结构设计的运用范文

扭转效应在高层建筑结构设计的运用范文

本站小编为你精心准备了扭转效应在高层建筑结构设计的运用参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

扭转效应在高层建筑结构设计的运用

【摘要】伴随着经济水平的提高,高层建筑得以快速发展,对于促进当地经济稳步发展意义重大。但从实际情况上来讲,工程施工中仍存在各种问题,以结构设计扭转效应问题为主,降低工程的施工质量。因此,需根据扭转效应的发生原因制定有效的控制措施,以提高建筑业的经济效益。下面,本文从扭转效应发生原因出发,综述控制扭转效应的原则和控制措施。

【关键词】高层建筑;结构设计;扭转效应;控制措施

1高层建筑结构设计中扭转效应的发生原因

所谓的扭转效应是计算建筑结构空间时,因项目工程结构不规则导致的结构位移。需重视的是,建筑的扭转效应指的是项目工程的主体部分,在自然灾害发生时,将严重破坏工程结构。调查结果显示,建筑结构设计中的扭转效发生原因主要包括这样几个因素:①外部因素。从外部因素上来讲,地震波是造成扭转效应的重要因素,以面波、纵波、横波为主。其中,面波会沿着地表结构蔓延,是破坏建筑工程的关键因素;横波会抖动地面,破坏性相对较强;②内部因素。对于建筑工程来讲,工程抗扭转刚度小是引起扭转效应的主要原因,逆转刚度对建筑工程结构所产生的关键作用是结构的地震扭矩。从力学角度上来讲,构建距离地质中心越远,抗扭转刚度也就越大。当地震作用在建筑工程时,将产生一定的破坏力,且该破坏力作用于建筑工程,而不产生扭转效应时,该点被称之为刚心。由此可见,刚心在建筑工程中并不是一成不变的,且随着相应因素的不断变化而变化。同时,地震作用在建筑工程时,若地质中心、刚心处于不重合状态,将不会发生扭转;若地质中心、刚心不重合出现偏心距时,将扩大扭转效应,影响高层建筑工程的施工质量。

2高层建筑结构设计中扭转效应的控制原则和措施

2.1控制原则

国家所颁布的《建筑抗震设计规范》曾明确提出建筑工程结构平面的扭转要求,且建筑工程的结构技术规程也明确要求在考虑偏心地震的情况下,楼层之间的构件水平、层间位移,建筑工程的最高高度不能高于平均值的1.1倍;对于B级建筑工程来讲,其高度不能大于该楼层平均值的1.1倍。从材料的力学角度上来讲,抗扭转构件距离地质中心越远,抗扭转刚度也就越大。因此,在抗扭转构件的布置过程中,应根据实际情况适当加大构件截面,以增大抗扭转刚度;在对高层建筑的结构进行设计时,尽可能的减少工程结构的刚心、偏心率,进而减小建筑工程的扭转效应。

2.2控制措施

2.2.1均匀、对称的布置抗侧力结构

在对高层建筑的抗侧力构件进行设计时,需严格遵循分散、均匀的原则,并尽最大限度的使工程结构刚度中心、质量中心处于接近状态。若高层建筑工程位移比例无法满足建筑需求时,通常是由抗侧力结构未均匀、对称分布导致的。比如:靠近建筑工程的一边布置剪力墙不均匀等。一般情况下,房屋的动力功能是由建筑工程结构的设置决定的,只有保证建筑工程的结构设计满足抗震需求,工程结构布局科学、合理的设置,才能保证高层建筑结构耐性。相反,高层建筑结构布局相对复杂,结构设计不符合标准,不但无法满足减震需求,还无法保证建筑工程的施工质量。

2.2.2保证结构平面宽度

现阶段,相对小型的高层建筑结构平面狭长是建筑工程的常见问题,这种类型的建筑工程虽能满足用户需求,但仍不能从根本上规避安全事故,降低工程质量。为有效预防上述现象的发生,可从这样几点进行:①给予小型的高层建筑框架结构,尽可能的脱开相对狭长的构造。若建筑工程专业不允许,可在工程的大端部分添加抗侧力刚度,以有效控制建筑的扭转效应。若建筑工程专业允许,可在建筑工程中间适当添加框架柱,简单来讲就是增加框架跨数。该方法的应用不但能增加建筑工程梁线刚度,还能提高项目工程结构的抗扭转刚度;②给予相对小型的高层建筑框架剪力墙结构,因建筑工程房屋高度不是特别高,通常将剪力墙放置在电梯、楼梯之间,这些抗侧力构造一般处于集中分布状态,扭转效应相对较大。在这种情况的影响下,需削弱中间部分的剪力墙,在工程外侧添加剪力墙,这时的抗侧力刚度过大,间接增大高层建筑工程的施工成本。由此可见,若建筑工程中能使用框架体系,尽量不使用框架剪力墙体系,进而更好满足控制扭转效应需求。

2.2.3平面扭转效应

地震发生时,因建筑工程结构设计不规则、结构扭转刚度低等因素的存在,导致建筑工程严重受损,影响施工质量。但在对高层建筑结构进行设计时,将无法满足刚心、质心的重合需求,且工程结构的规则性设计也存在一定难度。同时,因建筑工程场地、施工情况的限制,在空间的布局上也无法按照相应标准、需求设计。故而,在高层建筑结构的设计过程中,要想有效控制扭转效应,应根据实际情况适当调整抗侧力结构,以满足抗震需求。

2.2.4控制建筑结构的周期

比通过对高层建筑抗扭转刚度的适当调整,能从某种程度上改变抗扭转刚度、抗侧刚度,以有效控制高层建筑的结构周期比,提高建筑工程的抗扭转性能。从实际情况上来讲,可从这样几点改变抗扭转刚度:①根据工程情况增加剪力墙厚度,以增强工程的扭转周期;②在对高层建筑结构的拉梁进行设计时,需适当增加拉梁刚度,进而实现缩短扭转周期、增强抗扭转强度的目标。

2.2.5尽量加大周边抗侧力结构刚度

为从某种程度上加大高层建筑工程结构的抗扭转刚度,除科学、合理的布置工程的抗侧力结构外,还应尽量加大周边抗侧力结构刚度,主要表现为这样几点:①将建筑工程的单向剪力墙设置成形剪力墙,并尽量将其延长。当然,该操作中不能开转角窗;②加厚建筑工程的剪力墙厚度;③增加建筑工程周边剪力墙连梁高度,通常剪力墙的连梁高度确定是取楼板、下层门窗顶高度之间的距离。为从某种程度上增加高层建筑的剪力墙抗扭转刚度,可将楼面上、下方的高度部分演变成连梁,便于增强结构刚度,保证工程质量。

3小结

综上所述,伴随着经济水平的持续上涨,建筑业快速发展。但从实际的工程施工上来讲,因扭转效应问题的存在,影响着工程的施工质量。本文通过对高层建筑结构设计中的扭转效应进行分析得知,引起扭转效应的因素以内部因素、外部因素为主,故项目工程的结构设计过程中需根据实际情况调整抗扭转刚度,制定符合标准的结构设计措施,以在增强抗震性能的同时,消除地震的扭转效应,保证高层建筑工程的顺利施工。

参考文献

[1]凌有建,潘钦生.高层建筑结构设计中扭转效应的控制措施探讨[J].城市建设理论研究(电子版),2013,22(16).

[2]白凤娟.高层建筑结构设计中扭转效应的控制措施[J].建筑工程技术与设计,2016,14(2):169.

[3]姬国强.高层建筑结构设计中扭转效应的控制方法[J].建筑工程技术与设计,2016,16(5):617.

[4]刘宇.高层建筑结构设计中扭转效应的控制方法[J].城市建设理论研究,2014,20(10).

[5]许智豪.高层建筑结构设计中扭转效应的控制方法[J].装饰装修天地,2016,21(5):14

作者:黄生河 单位:张家界第一建筑设计有限公司