美章网 资料文库 新能源汽车节能减排潜力分析范文

新能源汽车节能减排潜力分析范文

本站小编为你精心准备了新能源汽车节能减排潜力分析参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

新能源汽车节能减排潜力分析

摘要:

采用车用燃料生命周期分析法,对北京市推广的电动出租车、公交车、环卫车和租赁电动车的节能效应和减排效应进行量化分析,结合北京市电动车的运行情况对新能源电动车的碳排放影响因素进行分析,在此基础上对“十三五”期间北京市新能源汽车能减排效果预测,并据此提出一定发展路径的政策建议。研究认为:北京市现行推广的电动出租车、公交车、环卫车和租赁电动车具有较好的节能减排效果;发电结构、车用燃料类型等影响因素对电动车的减排效果影响较大;预计到2020年,推广的新能源电动车将节能154769万千瓦时、减排CO239.4万吨。

关键词:

新能源汽车;节能减排;车用燃料生命周期;“十三五”

随着节能减排标准日益严厉(或成全球最严的京六标准拟于2017年实施),节能汽车和新能源汽车成为各车企未来主要发展方向,各大车企公布的“十三五”规划也均把节能和新能源汽车作为未来发展重点。中国工信部官方数据显示,仅2015年1—10月,新能源汽车累计生产20.69万辆,同比增长3倍。但是,无论是从国家政策还是从企业的关注程度来看,已推广的新能源汽车带来的节能减排效果,特别是为北京这类容易拥堵的特大城市缓解空气污染的效果如何,都直接影响“十三五”期间整个新能源汽车产业发展的方向[1-2]。生命周期评价(LifeCycleAssessment,LCA)[3]是一种对产品从“摇篮到坟墓”生命周期全过程的环境和资源评价方法,国外很早就开展了相关研究及应用。WTW(WellToWheel)分析法是LCA专用于评价交通机动工具燃料的一种方法[4],包括原料的开采、原料的运输、燃料的生产、燃料的运输与加注及燃料的使用等5个环节。WTW分析法将这5个环节划分为油井到油箱(Wellto-Tank,WTT)和油箱到车轮(Tank-to-Wheel,TTW)两个过程,给出了包括WTT和TTW两过程中各环节相关的能量效率及CO2排放量的计算方法[5]。本文使用该方法,对北京市开始推广的电动出租车、公交车、环卫车和租赁电动车的节能效应和减排效应进行量化分析,核算出自2012年起至今北京市推广的电动汽车累计的节能减排效果。交通运输是城市能源消耗和碳排放的重点行业,为通过节能减排实现低碳城市发展目标,传统汽油车向新能源汽车的转型是一项重要的举措[6],其中电动汽车因其节能减排的优势将在这次转型中发挥重要作用。本研究在全面总结北京市电动汽车节能减排研究成果的基础上,分析了影响电动汽车的减排因素,并结合北京市电动汽车的使用情况[7],分析了电动汽车的碳排放及其减排潜力。在此基础上,进一步对“十三五”期间北京市新能源汽车节能减排效果预测,据此进行一定的发展路径分析

一、北京市新能源汽车节能减排效果评估

本文以北京市全部在运的电动出租车、电动公交车、电动环卫车,以及新能源汽车租赁服务的部分汽车为研究对象,结合北京市发电能源结构,在相同行驶里程的统一核算口径下,对以上几种车型的节能和碳减排效应进行分析,探寻影响新能源汽车碳排放的主要因素,并在《北京市电动汽车推广应用行动计划(2014—2017年)》①等规划情景下,对北京市“十三五”期间新能源汽车节能减排效果进行模拟,并提出政策建议。“北京市电动汽车监控与服务中心”(以下简称“监控中心”)对北京电动出租车、电动公交车、电动环卫车、电动汽车租赁等分别从2012年7月、2014年1月、2013年1月、2015年6月开始实施监控。与2012年7月监控中心初始录入电动车辆总计290辆相比,截至2015年11月,监控中心录入电动车辆总计已达4229辆,增长了13.6倍。监控车辆共计3771辆,监控比例达89.2%,北京市新能源电动车的推广和实施在“十二五”期间已经取得一定进展。以下研究依托于该监控数据平台完成。

(一)北京市出租车的节能减排分析1.2012年7月—2015年11月,北京电动出租车总计节能5781.4万千瓦时。2011年,首批北汽福田“迷笛”纯电动出租车在延庆县示范运行。从2012年4月开始,陆续在延庆、房山、密云、平谷、大兴、昌平、怀柔、通州、顺义等区县推广,按规划至2017年在全市10个郊区县运行车辆总数达5000辆以上。截至2015年11月,监控中心录入电动出租车辆总计2479辆,监控车辆数为2298辆,监控比例92.7%,累计行驶里程12793万公里。研究结果显示,2012年7月—2015年11月,电动出租车总计节能5781.4万千瓦时,折合为482.8万吨汽油。电动出租车对燃油出租车有明显的节能替代效应,但近5年电动出租车保有量大幅增加,导致出租车能耗总量快速上涨。2.2012年7月—2015年11月北京电动出租车总计减排5369.5吨。基于车用燃料全生命周期对电动出租车的CO2排放量进行核算,结果表明,2012年7月—2015年11月电动出租车总计减排5369.54吨,具有减排优势。在控制出租车总量的前提下,加之北京相比其他城市发电结构更优,所以大力推广电动出租车,对北京这类特大城市而言减排效果将更明显。

(二)北京市公交车的节能减排分析1.2014年1月—2015年11月电动公交车总计节能380.9万千瓦时。截至2015年11月,监控中心录入电动车辆总计391辆,比2014年1月增长了39.6%,累计行驶里程为316.3万公里。分析结果显示,2014年1月到2015年11月电动公交车总计节能380.9万千瓦时,折合为31.8万吨汽油。2.电动公交车的CO2排放量仅为燃油公交车的79.3%。2014年1月—2015年11月电动公交车总计减少排放625.9吨,电动公交车的CO2排放量仅为燃油公交车的79.3%,“十三五”期间增加公交车的运营数量,特别是增加电动公交车的运营数量,具有较大的减排优势。

(三)北京市环卫车的节能减排分析2013年1月电动环卫车辆总计871辆,其中2吨环卫车807辆、8吨环卫车33辆、16吨环卫车31辆。截至2015年11月,电动环卫车辆总计1324辆,2吨和8吨的环卫车数量分别增长51.1%和139.4%,16吨环卫车数量降低16%,总量增长52%。1.电动环卫车能耗仅为燃油环卫车的77.1%。2013年1月—2015年11月电动环卫车总计节能53.6万千瓦时,折合为4.3万吨汽油,电动环卫车能耗为燃油环卫车的77.1%。北京市环卫集团推广使用新开发的纯电动环卫车续航里程可以达到360公里、连续作业时间达7小时,作业效率相当于20个环卫工人的工作量,可以节省80%以上的劳动量,但使用和维护成本还不到传统环卫车的三分之一,节能和成本节约效果明显。2.电动环卫车碳排放量为燃油公交车的92.3%。基于2013年1月—2015年11月环卫车运营数据,电动环卫车总计减少排放48.53吨,碳排放量为燃油公交车的92.3%。相比公交车和出租车,电动环卫车的减排优势并非特别突出,究其原因,电动环卫车的电力系统除了需要供给车辆本身的驱动之外,还需要满足环卫车本身的清洁作业需求,而传统燃油环卫车的清洁作业工序能耗则不计入百公里油耗。如果采用统一计算口径,电动环卫车的减排效果更乐观。

(四)北京市汽车租赁的节能减排分析2015年6月电动汽车租赁服务的部分汽车纳入监控中心监测系统,监控车辆数从6月的17辆上升到11月的35辆,数量有限。1.新能源电动汽车租赁市场占有率仍然很低。2015年6月—2015年11月,租赁电动车节能5.23万千瓦时,折合为4227.7吨汽油。但是35辆监控车辆显示的市场占有率太有限。2.消费者接受意愿和程度影响租赁商业模式推广。2015年6月—2015年11月,电动汽车租赁减少CO2排放量为4.86吨。新能源电动汽车租赁服务推广、实施力度以及消费者的接受意愿和程度,依然极大地影响着这一商业模式的推广。

二、新能源电动汽车碳排放及其影响因素分析

电动汽车的能源利用效率比传统燃油汽车高出46%以上,并具有13%~68%的CO2减排潜力[7],但其减排潜力受诸多因素影响[8]。本研究从发电能源结构、车用燃料类型(单位燃料的CO2排放系数)、汽车类型(百公里能耗)、城市交通状况(时速)、煤电技术供电路线、电池类型(重量、能效)等6个因素对电动汽车燃料生命周期碳排放的影响效果进行比较分析。

(一)北京市发电能源结构的影响根据《北京市“十二五”时期能源发展建设规划》①、《北京统计年鉴》及国家统计局相关数据,2014年②、2020年全国的发电结构和2015年北京市的发电能源结构中[9-10],发电能源结构如表1所示。选取监控中心2012年7月—2015年11月北京市电动出租车为研究对象,在车辆总数、累计行驶里程、百公里能耗等参数不变的情景下,纯电动出租车在2014年全国发电结构下减排了5370吨;在2020年全国发电结构下预计减排空间为8475吨;在北京2015年电网能源发电结构下减排10245吨,是2014年全国发电结构下排放的48.5%。由此可见,不同的发电结构能够很大程度影响电动出租车的CO2排放量,而且以北京2015年电网能源发电结构进行计算,车辆的减排效应甚至高于全国2020年发电结构情景下的减排量。主要因为北京市电网中火力发电比例较低,且有部分电力从外省调入,因而较全国电网能源结构更清洁。

(二)车用燃料类型(单位燃料的CO2排放系数)的影响在累计行驶里程、累计车辆总数等参数不变的情景下,空调能耗不计,依据2015年北京电网公布的发电能源结构,在耗电行驶生命周期阶段,纯电动公交车减排893吨、燃气公交车减排400吨,占比分别为70.5%、81.2%。可见,车用燃料类型直接影响单位燃料的CO2排放系数,公交车、出租车、环卫车3种车型中,电力驱动的公交车减排效果最好。

(三)汽车类型(百公里能耗)的影响在年均行驶里程、CO2排放系数等参数不变的情景下,对不同车型碳排放进行比较分析③。图1显示,公交车的排放水平最高,环卫车其次,最低排放的车型是出租车。环卫车的排放水平约为公交车的47.6%,而出租车的排放水平约为公交车的16.7%。

(四)北京市城市交通状况(时速)的影响目前北京市车速为20千米每小时的拥堵时间为日均1.75小时,畅通时速约50~60千米每小时,行驶距离为35千米。在累计车辆、累计形式里程以及CO2排放系数、效率等参数不变的情景下,计算2012年7月—2015年11年燃油出租车和电动出租车行驶过程中由拥堵到畅通的碳排放量。核算结果表明,当车速由60千米每小时降低到20千米每小时时,燃油出租车的碳排放是低速的29.4%,纯电动出租车的CO2排放则是低速的36%。畅通情景下,电动出租车的碳排放为燃油出租车的75.9%;而拥堵情景下,电动出租车的碳排放更低,仅为燃油出租车的62%。随着车速的降低,电动汽车相对于燃油车减排优势愈发明显。

(五)不同煤电技术供电路线的影响以监控中心北京市电动出租车为研究对象,在运营汽车数量、百公里能耗、累计行驶里程等参数不变的情景下,对比分析不同煤电技术供电路线与汽油车路线生命周期的碳排放量。应用IGCC(IntergratedGasificationCombinedCycle)与CCS(CarbonCaptureandStorage)组合技术减排效果最显著,相比网电技术,有高达36%的减排空间,应用此技术既降低供电煤耗,还能对CO2进行捕捉和收集,和IPCC报告提出的“煤电IGCC工厂应用CCS技术能降低约20%的电力输出,同时捕捉85%~95%的CO2。”结论一致。煤电技术对减排效果起关键作用。

(六)电池类型(重量、能效)的影响假定北汽“EV200”纯电动出租车分别以磷酸铁锂电池、锰酸锂电池、铅酸电池为动力行驶,在耗电行驶生命周期下,磷酸铁锂电池CO2排放量是锰酸锂电池的87.4%、铅酸蓄电池的88.5%。磷酸铁锂电池驱动电动车碳减排性能明显优于锰酸锂电池、铅酸蓄电池驱动车。

三、“十三五”北京市新能源汽车节能减排效果预测

“十二五”期间电动车保有量占全部车辆的4.9%,但能耗仅占总能耗的2%,CO2排放量仅占全部车辆排放量的2.86%,燃油车仍占很大比重。“十三五”期间增加新能源汽车的占比,有很大的节能减排空间。根据2010—2014年5年间北京市出租车、公交车、环卫车的数据的平均增长率,以及《关于加快新能源汽车推广应用的实施意见(征求意见稿)》①、《北京市电动汽车推广应用行动计划(2014—2017年)》等规划要求,“2017年北京市电动环卫车数量占总环卫车数量的50%;到2020年,京津冀地区新增或更新城市公交车、出租汽车和城市物流配送车辆中,新能源汽车比例不低于35%。”综合预测出2020年底出租车、公交车和环卫车的保有量分别为68648辆、45295辆和15817辆。预测结果表明,至2020年底,3种车型合计能耗为154769万千万时。其中,出租车总能耗为61691万千万时,新能源出租车能耗占44.8%;公交车的总能耗为91832万千万时,新能源公交车的能耗占总能耗的63.64%;环卫车的总能耗为1245万千万时,新能源环卫车的能耗占总能耗的43.2%。至2020年底,3种车型合计排放CO2量为39.4万吨。其中出租车总排放为6.6万吨,新能源出租车排放占总排放的57.5%;公交车总排放23.4万吨,新能源公交车排放占比61.5%;环卫车总排放为0.43万吨,新能源环卫车排放占比为56.1%。2020年出租车保有量较2015年增加了0.9%,公交车增加了8.8%,环卫车增加了47%,但3种车型总能耗却减少4.6%,CO2的总排放仅增加了7.1%,减排效果较明显。按车辆燃料全生命周期核算,能源的开采、运输以及电网发电结构仍然对结果有较大影响,因而在未来5年中,提高能源的开车运输效率以及调整电网发电结构依然是重要的发展目标。

四、主要结论与“十三五”政策建议

1.增加新能源公交车数量的同时,还应考虑适合的新能源车型。电动公交车的CO2排放量仅为燃油公交车的79.3%,具有较大的减排优势。新能源公交车节能减排效果随有效载客量、空调开启时长的不同,差异很大,因此应结合区域特点,选择合适的新能源公交车型。2.控制出租车总量的前提下,加大新能源电动出租车占比。电动出租车有巨大的节能减排优势,无论是按月份平均还是累计的车辆节能减排情况,其效果都很显著。“十三五”期间北京市应在控制出租车总量的前提下,加大新能源电动出租车对燃油出租车的替换力度。3.推广新能源汽车租赁商业模式,健康发展租赁市场。新能源电动汽车的推广和实施力度,以及群众的接受意愿和程度,极大地影响着新能源汽车租赁这一商业模式的推广实施。进一步促进北京市交通部门绿色、低碳和健康发展,仍需要加大推广新能源汽车租赁服务,让新能源汽车租赁在整个汽车租赁的市场上,逐步占据主导地位。4.有效改善能源结构,大力推广电动汽车节能技术。在不同煤电技术供电路线下,电动汽车耗电行驶生命周期阶段减排效率差异明显,和网电技术相比,应用IGCC与CCS组合技术减排效果最显著,具有高达36%的减排空间。北京市在减少煤炭发电,提高新能源发电比例的同时,应积极采用IGCC、CCS等节能减排技术,降低供电煤耗是减少电动汽车碳排放最有效的途径。5.发挥北京特有的“产、学、研”优势,实现关键技术突破。磷酸铁锂电池的CO2排放量分别是锰酸锂电池、铅酸蓄电池的87.4%、88.5%,磷酸铁锂电池驱动电动车碳减排性能明显优于锰酸锂电池、铅酸蓄电池驱动车。“十三五”期间,在“产、学、研”结合的技术革新模式上占有绝对优势的北京,应围绕动力电池技术、煤电技术、车身轻量化技术、绿色轮胎技术等方面率先实现关键技术的突破和推广。6.改善北京城市路况,避免交通拥堵带来的巨大能耗和碳排放。以出租车为例,当车速由60千米每小时降低到20千米每小时,燃油出租车的碳排放是低速的29.4%,纯电动出租车的CO2排放则是低速的36%。“十三五”期间应合理布局北京城市交通道路、有效控制车辆保有量,出台相应政策减少出行车辆,避免由于交通拥堵产生的额外能耗损失和碳排放增加。7.交通拥堵状态下,电动汽车相对于燃油车减排优势愈发明显。以出租车为例,在拥堵的情景下,电动出租车的碳排放仅为燃油出租车的62%,与通畅情景相比下降了13.9%。很显然,交通拥堵状态下,电动汽车相对于燃油车减排优势愈发明显。在交通压力短期内无法得到有效改善、而发电结构相对更优的特大城市,发展电动汽车节能减排效果更为显。

作者:唐葆君 马也 单位:北京理工大学 管理与经济学院 能源与环境政策研究中心 北京电动车辆协同创新中心