美章网 资料文库 矿山机电设备故障诊断技术的应用范文

矿山机电设备故障诊断技术的应用范文

本站小编为你精心准备了矿山机电设备故障诊断技术的应用参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

矿山机电设备故障诊断技术的应用

摘要:矿山开采活动日渐增多,矿山机电设备长年累月运转,发生故障在所难免。为了确保设备的正常运转,保障生产活动,需要应用故障诊断技术对设备进行故障检查与维修。

关键词:矿山机电设备;故障诊断技术;应用

对于矿山机电设备而言,故障诊断技术可以对其运行的状态进行了解和掌握,并判断整体设备或者局部部件是否存在异常,找出故障与产生故障的原因,而且可以对故障发展的趋势进行预测。随着经济的发展,矿山开采活动日益频繁,大量的机电设备投入运行。在开采作业中,这些机电设备有很大机率发生故障,为了能够及时地诊断并进行维修矿山机电设备的故障,应用故障诊断技术已成为大势所趋。

1矿山机电设备维护与维修的要点

矿山机电设备在运行过程中会发生各种各样的故障,为了确保机电设备能够正常运行,应当做好预防为主的计划检修工作,时刻保持对机电设备的观察检测,若在机电设备的使用过程中发现潜在的安全隐患,则需要进行及时的排除与维护。同时,对矿山机电设备要定期进行检查,也就是计划检修,如果在检修过程中发现有安全问题或者设备磨损等情况,则需要进行及时维修。其次,在生产的同时兼顾设备检修,正确处理好二者之间的关系。对于煤矿生产安全工作而言,设备检修也是其重要的一部分,同样需要投入一定的财力、人力以及物力。而有些煤矿为了确保年产量完成任务,忽视了设备的维护检修工作,从而使得有些机电设备带病工作,不但对日常的生产工作造成影响,而且容易引起煤矿安全事故。最后,日常保养与定期专业维修相结合。应由专人负责机电设备的日常维护和保养,同时,专业的修理单位也要对机电设备进行定期检查和维修。

2矿山机电设备故障诊断技术的应用分析

2.1主观诊断技术的应用

所谓主观诊断技术,主要是通过运用简单的维修仪器,或者以以往的实践维修经验为依据来诊断设备的故障。主观诊断技术具有快速便捷的优势,其不足在于可靠性不高。主观诊断技术又可以进行多种划分,一般有以下五种:直觉经验法、故障树分析法、逻辑分析法、堵截法、参数测量法[1]。直觉经验法主要是指以感官和经验为依据,辅之以看、听、摸、闻和问等,对故障产生的原因进行诊断。直觉经验法能够及时解决故障,但可靠性不高。故障树分析法主要是先以系统为依据,将故障树逻辑结构图做出来,在故障树的顶部画出系统故障事件。作为顶事件,在故障树下画出引起系统故障的基本事件。作为底事件,再以各个元件的故障率为依据,最后找出系统故障。这一方法适用于比较复杂、大型的系统故障。逻辑分析法主要是经过逻辑分析故障的常见现象与逻辑关系,以此对故障产生的原因与位置进行确定,进而解决故障问题。堵截法主要是通过分析液压系统的构成,并结合故障现象,以此为依据对堵截点进行选择,再通过对系统压力和流量的变化进行堵截观察,以此确定故障点。参数测量法主要是在系统回路中测出所需点的工作参数,然后和系统正常工作参数进行比较,从而发现参数正常与否,进而判断出故障和故障点的位置,适用于定量预报和在线监测。

2.2仪器诊断技术的应用

仪器诊断技术就是通过控制设备系统的主要参数,既包括振动、温度、压力和力矩,也包括执行部件的速度、泄漏等,使用计算机进行运算,或者使用相关仪器进行显示,进而得出诊断结果[2]。在仪器诊断技术中使用到的诊断仪器包括综合型、专用型和通用型三种。仪器诊断技术在发展过程中,逐渐呈现出了多样化,不但包括便携式和非接触式,还包括了智能化和多功能化。

2.3数学模型诊断技术的应用

数学模型诊断技术使用的就是数学方法,通过对一些特征值进行测量,进而对这些信号进行相关性的分析和处理,以此确定故障的源头。从本质上说,数学模型诊断的基础是信号和建模处理,其手段是传感器技术与动态测试技术。

2.4智能诊断技术的应用

智能诊断技术主要是由系统进行控制,对人脑特征进行模拟,对故障信息进行有效的获取、传输和处理,同时进行再生和利用,对系统中事先存储的专家诊断经验进行再次使用,从而诊断设备故障。智能诊断技术又可以划分为多种类型,其中既包括神经网络系统诊断法和灰色系统诊断法,还包括了专家系统诊断法和模糊诊断法[3]。而这四种方法中又以神经网络与专家系统研究的最为广泛,实现了智能化故障诊断。这两种智能诊断技术多用于煤矿机电设备,其潜力巨大。以人工智能为技术基础的专家诊断系统,主要是通过计算机技术的使用,对某些领域有巨大贡献的专家进行模拟,将他们的经验方法用于设备故障的解决,这种诊断方法较为先进。

3故障诊断步骤

3.1建立数学模型

矿山机电设备在正常运行时会产生许多数据和参数,这些数据、参数能够准确反映矿山机电设备运行的状况,为机电设备的故障诊断提供了十分重要的依据。建立数学模型就是为了更好地收集这些参数数据。从本质上来说,故障诊断数学模型可以简单划分为两个层次,即定性和定量。所以,矿山机电设备应当遵循这一原则来建立故障诊断数学模型。

3.2采集、处理和分析

信息进行信息数据的采集时,将传感器针安装在矿山机电设备上,在运行过程中,机电设备发出的各种信号通过传感器针进行采集和测量,然后对这些收集的信息进行传送并储存在数据贮存器中,实现对参数数据的了解和掌握。这些数据还不可以直接作为故障诊断的依据,还必须进行相关的处理,删除没有价值的信息,对有价值得信息进行转换,使其成为能够被直接理解的数据,再进行分析和比较,将设备正常运行的参数标准当作参考的对象和依据,对矿山机电设备的运行状态进行判断,最终确定设备故障,并找出故障原因。

3.3故障的预测

对信息进行科学有效的分析后,将其作为重要的基础数据,以此来预测和评估机电设备的故障情况。对于机电设备各元件的使用情况或使用寿命,也可以用基础数据来进行预测和评估。经过预测评估,机电设备的日常保养和维修便有了科学有效的数据依据。

4结语

综上所述,矿山机电设备故障诊断技术的应用具有重要的意义,其有助于机电设备的维护与维修,确保机电设备的正常运行,保证了矿山生产的有序进行。对设备的诊断维修,能够使设备的使用寿命得到延长,减少设备的运行维修成本,从而节约企业生产成本。

参考文献:

[1]杨晨光.浅析如何有效加强矿井机电设备的安全与维护工作[J].科技经济导刊,2017(19):46.

[2]王晓英.探讨矿山机电设备中电气断路故障检测[J].黑龙江科技信息,2012(33):70.

[3]孙新城.浅析煤矿机电设备维修中故障检测诊断技术的应用[J].企业技术开发,2011(17):70-71.

作者:邓利明 单位:山西煤销集团