美章网 资料文库 光伏发电系统最大功率跟踪控制研究范文

光伏发电系统最大功率跟踪控制研究范文

本站小编为你精心准备了光伏发电系统最大功率跟踪控制研究参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

光伏发电系统最大功率跟踪控制研究

光伏电池是光伏发电系统的核心部分,由于光伏电池受光照强度及温度变化的影响很大,其输出特性呈现高度非线性化,所以,当外界环境发生变化时,光伏电池的输出功率也会随之发生改变。为了有效提高光伏发电系统的效率,要求无论外界条件怎样变化,光伏发电系统的输出功率应始终保持最大值。为了解决这一问题,本文分析了光伏电池输出特性及等效模型,提出最大功率跟踪(MaximumPowerPointTracking,MPPT)控制算法,并基于Matlab/Simulink的电导增量法建立MPPT仿真模型对其科学性、有效性加以验证。

1光伏电池输出特性及等效模型

光伏电池单体是实现光电转换的最小单元,将光伏电池单体进行串联、并联后分装就组成了光伏电池组件,把若干个光伏电池组件进行串联、并联后装在支架上就形成了光伏电池阵列[1]。光伏阵列是光伏发电系统的关键部件,其输出特性受外界环境影响很大,只有深入了解其输出特性,才能为研究光伏发电系统的MPPT技术奠定基础。

1.1光伏电池输出特性光伏电池受外界环境如光照强度、温度的影响很大,其输出特性具有高度非线性。分别是利用PVsyst软件[2]仿真的光伏电池在不同光照及温度条件下的输出特性。从图中可以看出,随着光照的增强输出功率增大,随着温度的升高输出功率减小,但在某一特定光照及温度下存在一个最大功率点。

1.2光伏电池等效模型光伏电池本身就是一个P-N结,其基本特性与二极管相似。当光伏电池受到阳光照射时,在PN结两端便产生电动势,即电压。这时如果在P型层和N型层焊接上金属导线,接通负载,则外电路便有电流通过,把这样的光伏电池单体串联、并联起来,就能产生一定的电压和电流,并输出功率。光伏电池等效电路可由1个电流源并联1个理想二极管及一系列电阻组成,如图3所示。串联电阻Rs包括电池栅极电阻、基体材料电阻和上下电基与基体材料的接触电阻、扩散层横向电阻。其中,扩散层横向电阻是Rs的主要组成。

2MPPT控制算法

由图1、图2可以看出,光伏阵列的输出特性受电池表面温度和光照强度的影响很大,不同的光照及电池温度都可导致输出特性发生较大的变化,其输出功率也发生相应的变化,但是只有在某一输出电压值时,光伏阵列的输出功率才能达到最大值。因此,在光伏发电系统中,要提高系统的整体效率,一个重要的途径就是实时调整光伏阵列的工作点,使之始终工作在最大功率点附近[4]。在MPPT系统中,确定优良的算法是关键,本文采用电导增量算法。电导增量法是根据光伏阵列P-U曲线一阶连续可导单峰曲线的特点,利用一阶导数求极值的方法,即对P=UI求全导数。从光伏电池的P-U曲线可以看出,在某一特定光照及温度下存在唯一最大功率点,且在该最大功率点处,功率对电压的导数为零,即dP/dU=0。其中,U(k)、(Ik)分别为光伏电池当前电压和电流,U(k-1)、(Ik-1)为前一周期的采样值。为了使光伏电池输出发生任何变化时,算法能够涵盖所有可能出现的状况,需要用U(k-1)、I(k-1)的值进行判断。如果U(k)-U(k-1)=0,则相比于前一周期,该时刻的电压是恒定的,输出没有发生变化。在这种情况下,需要对输出电流做进一步判断,如果(Ik)-(Ik-1)=0,则光伏电池的输出也没有发生改变,不需要调整BoostDC/DC(升压)变换器的占空比;若(Ik)-I(k-1)<0,表明工作点是向最大功率点方向靠近,需要对BoostDC/DC变换器的占空比加一个正的调节量△U,使输出达到最大功率点;若I(k)-I(k-1)>0,需对BoostDC/DC变换器的占空比加一个负的调节量-ΔU,使输出朝向最大功率点靠近。

3MPPT控制仿真研究

3.1带有MPPT功能的光伏发电系统基本组成由于光伏电池的电气特性受光照、温度的影响很大,当环境条件稳定时,存在唯一的最大功率点;当环境条件发生变化时,即使负载保持不变,最大功率点仍将发生漂移。为了使负载在任何环境条件下都能获得最大功率,本文在光伏阵列与负载之间加入MPPT控制装置,带有MPPT功能的光伏系统如图5所示。该系统主要由光伏电池阵列、MPPT控制装置、BoostDC/DC变换器组成,通过脉冲宽度调制模块(PulseWidthModulation,PWM)控制,调整BoostDC/DC变换器的占空比来实现MPPT[7]。

3.2MPPT控制仿真研究

3.2.1带MPPT的系统仿真模型根据带有MPPT功能的光伏发电系统建立matlab/simulink仿真模型如图6所示。仿真模型主要由光伏电池阵列模型、MPPT、PWM、BoostDC/DC变换器以及负载等组成。图6中,Subsystem是光伏电池阵列模型,L为储能电感,Diode为快恢复二极管,C1为滤波电容,R为负载,IGBT为绝缘栅双极型晶体管(InsulatedGateBipolarTransistor,IGBT)。Subsystem内部封装的参数有电压、电流温度系数、串联电阻、参考温度(25℃)、参考太阳辐射(1000W/m2)、最大功率点电压、最大功率点电流、开路电压、短路电流。输入参数有光照S、温度T、光伏电池工作电压U,输出参数有光伏电池工作电流I、输出功率P。其中,输入端可以输入任意光照和温度,输出端P即显示MPPT输出。PWM的输入信号为带有MPPT功能的光伏模块的输出电压,即最大功率点对应的电压值,将该电压作为指令信号,与光伏模块的实际输出电压共同作用在BoostDC/DC变换器的IGBT上,通过改变IGBT的占空比,从而使光伏模块的实际输出电压很好地跟踪指令信号,即最大功率点对应的电压值。BoostDC/DC变换器利用储能电感储存的能量和电源一起向负载供电,达到升压的目的。选择HAMC制造的太阳能电池板进行仿真实验,其技术指标为:Um=16.5V,Im=0.73A,Uov=22.50V,Isc=0.97A,Pm=12W。仿真时采用的步长为0.01,系统采样时间为0.5μs。图7是电池温度不变,光照强度t=0.05s时,突然由1kW/m2增加到1.5kW/m2时的仿真结果,图8是光照强度不变,电池温度t=0.05s时,突然由25℃变为60℃时的仿真结果。

3.2.2仿真结果分析从图7仿真结果可以看出,当电池温度不变,光照由1kW/m2增加到1.5kW/m2,在t=0.05s时,光伏阵列输出功率也随之由12kW增加到15kW,增加幅度为+3kW,光伏阵列输出功率曲线会发生较小的突变,但是在新的功率点能快速趋于平稳,使光伏阵列工作在最大功率点。从图8仿真结果可以看出,当光照强度不变,电池温度由25℃变为60℃,在t=0.05s时,光伏阵列输出功率也随之由12kW降低到10kW,降低幅度为-2kW,经过较小的突变后,系统也能及时地跟踪到最大功率点,使光伏阵列输出功率达到最大值。从图1、图2中得出,光伏电池在某一特定光照及温度条件下,存在一个最大功率点,并且在最大功率点以后,光伏电池输出功率急剧下降,最后下降为0。本文在光伏阵列与负载之间加入基于电导增量法的MPPT控制装置以后,从图7、图8的仿真结果可以看出,在光照、温度其中任何一个环境条件发生变化时,系统都能够实时地跟踪其变化,能使系统始终工作在最大功率点的范围内,稳定性高,从而有效提高了太阳能的转换效率。

4实用化应用探讨

在实际光伏发电系统中,在输出参数实时变化的光伏阵列与负载之间接入MPPT控制装置时,需要进一步做以下工作:(1)采用单片机或数字信号处理器(DigitalSignalProcessors,DSP)实现对电导增量算法的编程,并进行MPPT控制系统的软、硬件设计。通过检测光伏阵列的输出电压、输出电流变化,利用软件的精确算法来控制BoostDC/DC变换器的占空比,实现MPPT。(2)从光伏发电系统的整体出发,综合考虑安全性、实用性、经济性等方面的要求,设计MPPT控制系统的输入、输出接口电路,对其可靠性、稳定性做并网测试。(3)综合考虑光伏阵列的光电转化效率、温度范围、电气参数(输出功率、峰值电压、峰值电流、短路电流、开路电压、系统电压)等技术参数,对光伏电池充放电策略及充放电控制器做进一步研究。

5结论

(1)本文提出的基于电导增量法MPPT控制方法,通过PWM控制实现,能使光伏发电系统在任何环境条件以及负载变化情况下快速实现MPPT,且稳态精度高。(2)本文采用PVsyst软件对光伏电池的输出特性进行仿真研究,其方法为相关行业掌握光伏电池的输出特性提供了新的途径;建立基于电导增量法的MPPT控制模型,为解决实际光伏系统最大功率点漂移问题提供了理论依据。(3)下一步研究需要利用单片机或DSP进行MPPT控制系统的软、硬件及接口电路设计,并对其可靠性、稳定性做并网测试,以实现光伏发电系统MPPT的实用化。

作者:韩世军 朱菊 毛吉贵 强荣 秦力 韩大侠 单位:国网宁夏电力公司吴忠供电公司 神华宁煤集团烯烃公司