本站小编为你精心准备了铀黄饼的MCNP模拟探测参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《应用科技杂志》2015年第一期
1裂变中子铀黄饼探测原理
铀235为易裂变核,在不同的中子能量条件下具有不同的裂变反应截面,和快中子可以发生快裂变,和热中子可以发生热裂变,而且热裂变截面大于快裂变截面[9]。裂变过程中放出的中子,统称为裂变中子。裂变中子99%以上都是在裂变的瞬间释放出来,称为瞬发中子;不到1%的裂变中子是在裂变发生一段时间后,由某些裂变碎片经一系列的衰变过程放出的,称为缓发中子。热中子和铀235发生热裂变产生的瞬发中子能量较高,平均能量为1.98MeV,因此中子源脉冲结束后,记录的是超热中子能量范围的瞬发中子。因此,产生的超热中子数目与铀含量成一定比例,据此可用来实现对铀黄饼的探测。铀235与热中子的反应截面很大,为-262518210m。脉冲中子源发射出中子,诱发铀235发生裂变,产生2~3个瞬发裂变中子,其裂变的一般反应式如式(1)所示,式中X、Y为裂变碎片。此反应中,裂变发射出来的瞬发中子通量密度与脉冲中子源的强度、以及铀核材料中铀的含量是直接相关的,当设置好脉冲中子源的发射强度后,通过对裂变中子通量密度的测量就能直接反映出铀核材料中的铀含量。
2铀黄饼模型及模拟方法
2.1计算模型[10]利用mcnp程序建立铀黄饼的数值计算模型:外壳内外径分别为50和55cm,由内向外,分别由2.5cm的聚乙烯慢化体与2.5cm的石墨反射体组成。黄饼直径为20cm,长20cm。探测器直径为5cm,长20cm,距离中子源30cm。采用栅元通量计数,根据能量分段计数超热中子与热中子。脉冲中子持续发射时间为10μs,周期为2ms,模拟中子源粒子数为4×108个。
2.2瞬发裂变中子铀黄饼探测模拟瞬发裂变中子探测技术利用氦三探测器,记录铀黄饼中由于发生瞬发裂变而增加的超热中子计数。中子源脉宽为10μs,周期为2ms,改变黄饼中铀的含量分别为0、0.1%、0.5%、1%,探测器分别记录0~2000μs超热中子和热中子衰减时间谱。由图2、3可以看出,铀黄饼中的铀含量对超热中子的影响较大,当不含铀时,由源中子慢化产生的超热中子在t<100μs的时间内完全消失;而当铀黄饼中含铀时,超热中子通量明显增加,而且铀黄饼中铀含量越高,增加的超热中子越多。这主要是由于铀黄饼中含铀时,中子与铀235发生裂变反应,产生的瞬发裂变中子增加了超热中子的通量。记录脉冲结束后一段时间内的超热中子通量计数,可以反映铀黄饼中铀的含量。而铀黄饼中铀含量对热中子时间谱影响不大。
3计算结果分析
铀含量的变化对热中子时间衰减谱影响很小,但超热中子计数随着铀含量的不同变化较大,因此对超热中子时间衰减谱做积分处理,由图2可知,不含铀黄饼在100μs前超热中子通量递减为零,即源中子慢化而来的超热中子通量递减为零,这之后产生的超热中子基本上全是热中子与铀235发生热裂变产生的裂变中子;而600μs后,统计涨落相对较大。因此将时间谱中120~600μs内共计60道的超热中子计数进行累加,得到如表格1所示这4种铀含量下的超热中子相对计数,图4为铀黄饼中超热中子相对计数与铀含量的关系。模拟时,中子源很稳定,建立的模型都是在理想状态下进行模拟的,而在实际测量过程中,中子源的不稳定性和结构的影响,会降低铀含量的准确度。而超热中子的增加是由于铀黄饼中的铀235发生热裂变产生的,因此铀黄饼的超热中子衰减速度和热中子相同。此时,可以利用超热中子与热中子的比值来确定铀黄饼中的铀含量,如图5所示。
4结论
1)脉冲中子源脉冲结束后产生的超热中子能量范围的裂变中子,和黄饼铀含量呈正比关系,裂变中子计数越多,黄饼铀含量越大。2)在测量过程中,中子源的不稳定性和结构的影响,会降低铀含量的准确度。超热中子的增加是由于铀黄饼中的铀235发生热裂变产生的,因此铀黄饼的超热中子衰减速度和热中子相同。此时,可以通过热中子计数来校正黄饼中的铀含量,即利用超热中子与热中子的比值来确定铀黄饼的铀含量。3)基于本文的理论运用于实际,还需考虑极限探测距离与不均匀、不规则的探测对象。
作者:张坤明张雄杰瞿金辉汤彬单位:东华理工大学教育部核技术应用工程研究中心