美章网 资料文库 活性炭纤维吸附性能思考范文

活性炭纤维吸附性能思考范文

本站小编为你精心准备了活性炭纤维吸附性能思考参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

活性炭纤维吸附性能思考

《西安工程大学学报》2015年第一期

1理化结构分析测试方法

1.1比表面积及孔径测试采用V-Sorb2800比表面积及孔径分析仪,在液氮浴温度(77.4K)下进行活性炭纤维的吸脱附等温线测定,总孔容由相对压力(P/P0)为0.95时的氮吸附量换算成液氮体积得到,采用BET法计算比表面积,由BJH法计算孔径参数.

1.2扫描电子显微镜(SEM)扫描电子显微镜(scanningelectronmicroscopy,SEM)是样品表面形貌的表征手段,利用狭窄的电子扫描样品的表面,测试从试样表面反射出来的二次电子的信号,就可获取被测样品本身的物理、化学性质的信息.本实验采用电子显微镜技术旨在考察经过不同方法处理后活性炭纤维材料的表面变化.采用的SEM型号为FEG450型,在15~20kV下操作.1.5.3傅立叶红外光谱分析(FTIR)傅立叶红外光谱分析(fouriertransforminfraredspectroscopy,FTIR)是根据样品对不同波长的红外辐射的吸取特性,对分子结构和化学组成进行分析.本实验通过5700傅立叶变换红外光谱仪对活性炭纤维样品表面官能团的变化进行了研究.

2结果与讨论

2.1单因素实验

2.1.1温度对处理效果的影响分别在不同温度下用质量分数为3%盐酸浸渍活性炭纤维样品,水浴振荡30min,测定其比表面积及其碘吸附值,结果如图1所示.由图1可知,其碘吸附值均在1228mg/g左右,且比表面积变化幅度较小,故100℃以下处理温度对活性炭纤维的碘吸附值影响不大.建议实验处理温度采用25℃.

2.1.2盐酸质量分数对处理效果的影响研究表明,采用盐酸处理活性炭纤维,其碘吸附值比表面积均会增大.在温度为25℃,振荡时间为30min条件下,采用单因素实验确定盐酸的最佳质量分数,结果如图2所示.由图2可以看出,低质量分数盐酸对活性炭纤维具有较好的处理效果[5],且盐酸质量分数在3%左右时,其碘吸附值最大,可达1260mg/g左右,处理效果最佳.同时,比表面积测试结果显示,用质量分数为3%盐酸处理的活性炭纤维的BET比表面积为1076.87m2/g,较原样增大了26.2%.自质量分数为5%之后活性炭纤维对碘的吸附性能呈下降趋势,当盐酸的质量分数为20%时,其碘吸附值稍微有所上升,但高浓度盐酸的处理效果整体差别不大,均在1035mg/g左右.当盐酸质量分数过低时,对样品的去灰分程度不够,处理效果不明显,故其碘吸附值增大的幅度不大;随着盐酸质量分数的增大,对材料的预处理效果逐渐增强,并达到最大值;当盐酸质量分数继续增大,盐酸的腐蚀性随之增强,可能会对活性炭纤维表面造成腐蚀,发生扩孔现象,因而碘吸附值会随之下降。

2.1.3处理时间对处理效果的影响在盐酸质量分数为3%,水浴温度为25℃条件下,对处理时间进行单因素变量测试,如图3所示.当处理时间小于50min时,处理后的样品对碘的吸附值相对较高;当处理时间为50min时,样品对碘的吸附值最大,可达1245mg/g以上,其比表面积为1081.76m2/g;当处理时间超过50min之后,其碘吸附值有明显下降的趋势,之后基本保持在1083mg/g左右.当处理时间较短时,盐酸还未完全浸渍样品,吸附性能增大不太显著,随着处理时间的增大,盐酸对活性炭纤维的处理较为充分,故其碘吸附值较大,随着时间继续延长,在处理过程中出现扩孔现象,故其对碘的吸附值有所下降.因此,以50min作为最佳的处理时间.

2.2正交试验结果分析试验结果如表2所示.由表2可以看出,不同处理参数下活性炭纤维的碘吸附值及BET比表面积数值波动较为显著.由表2中的极值R可以看出,3个因素对处理效果的影响大小为:盐酸质量分数>振荡时间>水浴温度,说明振荡时间及盐酸质量分数对预处理效果的影响相对较大,与单因素实验结果基本一致.同时,由表2可以看出,根据最优水平的组合,活性炭纤维的最佳预处理条件为:A3B1C3,即当盐酸质量分数为4%,水浴温度为25℃,振荡时间为50min时,对活性炭纤维的处理效果最佳,碘吸附值可达1248.9632mg•g-1,较原样增大24.89%,比表面积增大27.45%.

2.3BET比表面积测试结果分析吸附剂的表面结构和化学性质决定吸附剂的吸附性能[6].原样和预处理最佳样品的N2吸脱附等温线如图4所示,其中P∶P0代表相对压强.从图4可以看出,两个样品的吸附等温线均趋近于Ⅳ型等温线,在低压区吸附等温线快速上升,且单点吸附密集,表明活性炭纤维含有大量的微孔,4%盐酸处理后的活性炭纤维在低压区的等温线上升幅度更大,表明经过酸洗后的样品微孔数量增多,使得样品的微孔吸附能力增强;随着相对压强的升高,曲线上升趋于平缓,说明活性炭纤维中孔量多.此外,随着相对压力增大的过程中,样品的吸脱附曲线出现分离现象,并出现滞后环,这是活性炭纤维样品中孔发生毛细凝聚现象的反映.同时,从表2和表3可以看出,盐酸处理后的活性炭纤维的比表面积明显增大.此外,微孔体积数据显示,经过酸处理之后的活性炭纤维的微孔体积由0.425639mL/g增大为0.465181mL/g,可能是由于盐酸浸渍去处理活性炭纤维表面的灰分,使得活性炭表面的部分微孔重新打开,孔容变大,这与酸洗的处理目的相符.由孔径分析数据可以看出,酸处理后活性炭纤维样品的孔径分布范围略微变大,可能由酸腐蚀引起,但SF中值孔径基本保持不变.

2.4活性炭纤维的表面形貌SEM分析利用SEM观察预处理后活性炭纤维的形貌变化,如图5所示.图5为原样和采用盐酸处理后的活性炭纤维在低倍扫描下(1000倍,10μm)的表面SEM形貌,图5(a)和(b)分别为原样和盐酸预处理后的活性炭纤维样品.本实验所用的原材料是由湿法高温活化后纺丝制成,由图5可明显地看出活性炭纤维是由一束束排列较为整齐的活性炭纤维丝构成,纤维丝表面有均匀的纵向沟槽,这是区别于干法纺丝制备最显著的特征.同时,可以看出盐酸处理前后的活性炭纤维表面形貌变化不大,经盐酸处理后的束状排列更加规整,表面较原样更加平整,纵向沟槽更加明显,且表面有少量的碎片状物质生成,可能是由于盐酸处理过程中对纤维表面发生刻蚀引起.由图5(c)可以看出活性炭纤维的断面较为平整、光滑,说明活性炭纤维材料模量较大,质脆.

2.5含氧官能团的FTIR分析活性炭纤维的表面含氧官能团对其吸附性能有非常重要的作用,其控制着活性中心的成核、活性组分与吸附质间的相互作用.图6为活性炭纤维的FTIR图.从图6可看出,原样ACF-1和盐酸预处理后ACF-2的官能团种类变化不大,但含氧官能团的吸收峰略微增强.处理前后ACF的红外光谱在1100cm-1附近均有醚基或酯基中C—O的红外特征吸收峰,在1400cm-1左右的谱峰对应于C—C红外特征吸收峰.经过盐酸处理后的ACF在1600cm-1~1700cm-1出现羰基吸收峰,这可能是羰基、羧基或酯基中CO红外特征吸收峰;而原样ACF在1580cm-1附近有一个吸收峰,这是当羰基和苯环共轭时产生的环振吸收峰,说明原样中存在苯环,而处理后的样品中苯环消失,可能是由于在处理过程中苯环的碳键断裂或被取代所致.

3结论

(1)将厚度为2mm的活性炭纤维毡裁剪成2cm×2cm,吸附效果最好.(2)盐酸处理活性炭纤维明显增大了其碘吸附值,且振荡时间及盐酸浓度对预处理效果的影响较大,实验温度对预处理效果影响不大(实验一般在室温下进行).(3)振荡时间为50min,盐酸质量分数为4%时,处理效果最好,其碘吸附值可较处理前提高49.5%,BET比表面积较原样增大27.43%,微孔孔容由0.425639mL/g增大为0.465181mL/g.(4)经盐酸处理后的ACF表面官能团变化种类不大,但含氧官能团的吸收峰略微增强.另外,原样中存在苯环的特征峰,而处理后样品中苯环的特征峰消失.

作者:杨清李海红同帜单位:西安工程大学环境与化学工程学院