本站小编为你精心准备了石油工程仿生学应用及展望参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《石油学报杂志》2016年第二期
摘要:
通过详细介绍仿生学在石油工程领域的发展现状,提出了石油工程仿生学的概念,指出了建立石油工程仿生学的必要性,概括了石油工程仿生学的特点和研究方法,并梳理了其发展趋势。目前,仿生学在钻井、管道、井筒等领域取得了实质性进展。未来石油工程仿生学研究应遵循科学的研究方法,按生物原型阶段、数学模型阶段和工程实现阶段循序渐进地加深研究成果,尽可能避免模仿的复杂性;同时加强在模仿中的创造与创新。石油工程仿生学发展应以生产中的技术需求为根本出发点,以改善现有的或创造崭新的技术系统为目的,有层次、分阶段地开展应用研究,在功能材料、表面性能、信息获取与处理、工程实现等方面为关键技术问题的突破提供创新性解决方案和技术手段,经知识积累、成果转化和工业化应用3个阶段,逐渐形成涵盖勘探、开发、工程的仿生技术体系。
关键词:
仿生学;石油工程仿生学;仿生技术体系;材料仿生;表面仿生;信息仿生;工程仿生
为了适应环境、延续生命,自然界中的生物经过亿万年的进化和优胜劣汰,造就了近乎完美的结构、形态和功能。五彩缤纷的自然界一直是人类产生各种技术思想和发明创造灵感的不竭源泉,从千百年前模仿蜘蛛织网发明渔网,到近代模仿鸟类飞翔发明飞机,再到21世纪模仿鲨鱼皮结构发明鲨鱼皮泳衣,人类一直在向大自然学习,利用仿生原理和思想推动技术进步,对仿生学的使用也从无意识向有意识转变。仿生学是研究生物系统的结构、性状、原理、行为以及相互作用,从而为工程技术提供新的设计思想、工作原理和系统构成的技术科学[1]。自仿生学诞生到20世纪末,科研工作者经过几十年的探索,逐步加深了对仿生学的认识和理解,初步掌握了仿生学研究方法,完成了基础知识的积累。进入21世纪,仿生学的思维和方法迅速渗透到各个学科和行业,研究成果大量涌现,根据发表科学论文数量推断,这一阶段的成果占了总数量的近90%。在这一时期,仿生学在石油工程中也出现了应用案例,不仅利用仿生学理论解决了钻井、管道防护等技术难题,并且对石油工业的技术创新理念和思维也产生了日益重要的影响。本文介绍了仿生学在石油工程领域的一些重要研究成果,在对仿生学在石油工程领域发展历程深入分析的基础上,提出了建立石油工程仿生学的必要性,并概括了石油工程仿生学的研究特点和方法,梳理了其发展方向。
1仿生学在石油工程领域的应用现状
仿生学的本质是模拟生命系统,其学科结合和行业结合的特点促进了优秀的仿生研究成果从科学研究走向生产实践,最终投入实际应用。仿生学和石油工程的交叉在钻井、管道、井筒、油藏等领域也产生了一些研究成果。
1.1钻井领域
1.1.1仿生钻井液井壁稳定问题一直是困扰国内外钻井的难题,水平井比直井的井壁失稳问题更加突出[2]。中国石油大学(北京)根据海洋生物贻贝足丝蛋白的超强黏附能力,研制了仿生强固壁钻井液体系[3]。该技术在聚合物主链上接枝类似贻贝足丝蛋白中的一种关键基团,合成类似贻贝蛋白质的水溶性聚合物。仿生钻井液体系在岩石表面自发固化形成致密且具有黏附性的“仿生壳”,起到维持井壁稳定的作用。试验井现场钻井试验表明,该仿生钻井液体系在抑制钻屑分散、稳定井壁、携屑等方面效果显著[4]。此外,模仿细菌结构开发了含仿生绒囊的钻井液[5],在钻井过程中无需固相即可暂堵漏失储层。目前,仿生绒囊钻井液已在煤层气欠平衡钻井、空气钻井、防漏堵漏、快速钻进等方面发挥了作用。
1.1.2仿生PDC钻头机械钻速与使用寿命是衡量钻头性能的两个重要指标[6],聚晶金刚石复合片(PDC)钻头因其出色的切削岩石速度和较长的使用寿命已成为最常用的破岩工具之一。然而,常规PDC钻头依然存在金刚石与硬质合金结合力不足、防黏效果不明显、磨损较快等缺点,为此,吉林大学开展了仿生钻头研究工作,研发的仿生钻头已从最初的单一功能仿生,发展到目前的耦合仿生,钻头性能也由单一的减黏脱附发展到减阻、耐磨、切削效率等指标的综合提升[7-9]。仿生耦合PDC钻头借鉴了竹子中纤维素和木质素的分布方式,牙齿中有机/无机2种不同材料的梯度复合形式,树木的年轮排布,贝壳表面的非光滑形态,以及蝼蛄前足的快速挖掘特点等多种生物特性,并将其进行耦合设计,如图1所示。现场试验表明,仿生耦合PDC钻头比常规PDC钻头钻进速度提高1.5倍,缩短了施工周期,降低了钻井成本。
1.2管道防护
1.2.1仿生水草海底防冲刷技术海底管道是海上石油输送上岸的主要方式[10],然而,海底复杂流场所引起的海底冲刷造成了管道悬空,给海洋采油安全和海洋环保带来重大风险。由于常规水下抛石、砂包堆垒、混凝土沉排垫等方法效果不理想,中国石油大学(华东)和中国石油化工股份有限公司胜利油田分公司提出了一种模拟海草黏滞阻尼作用的仿生水草海底防冲刷技术[11,12],原理如图2所示。当海底水流经过仿生水草时,其流速降低,减小了对海床的冲刷;同时,仿生水草促进海流携沙的沉降淤积,逐渐形成被仿生水草加强的海底沙洲,达到了埋管目的。现场试验表明,防冲刷仿生水草施工1年后泥沙淤积厚度达20~50cm,防护效果良好。该技术在海管悬空治理中得到了大范围推广应用。
1.2.2仿生血小板管道修复技术英国Brinker公司模仿血小板在伤口处凝结的原理,开发了一种管道修复技术[13]。在管道流体中加入Platelets微粒,当其流至裂缝处时,流体压力迫使其进入裂缝,达到阻止泄漏的目的,如图3所示。该技术已应用在BP公司Foinaven油田的注水管道和阿帕奇公司在Forties油田超期服役的原油集输管道上,为管道安全运行发挥了重要作用。
1.3井筒领域
1.3.1仿生泡沫金属防砂技术中国疏松砂岩油藏分布范围广、储量大,开采过程中必须采取防砂措施。根据骨松质的三维立体结构,提出了一种仿生泡沫金属防砂技术[14]。泡沫金属内部为三维孔隙结构[图4(a)],砂体进入孔隙后沉积在其中,但流通孔道不会被堵死,实现了常规平面防砂到三维立体防砂的转变[图4(b)]。基于仿生泡沫金属的复合防砂管[图4(c)],由不同孔隙度的多个泡沫金属防砂层、导流层、保护层等组成,该结构不仅扩大了防砂的粒径范围,还保障了防砂管的渗流能力和结构强度。目前,已发展出防砂粒径0.15mm、0.25mm、0.35mm的系列化仿生泡沫金属防砂工具,在油田应用5口井,对于出砂严重的井,防砂效果显著,大幅延长了检泵周期。
1.3.2仿生非光滑表面膨胀锥技术膨胀管作业过程中,膨胀锥与膨胀管内壁间存在巨大的摩擦阻力。为了降低摩擦阻力,提高膨胀锥的耐磨损性能,以穿山甲为仿生对象,模拟其体表的高强度保护鳞片结构,研发了仿生非光滑表面膨胀锥[15](图5)。仿生膨胀锥变径段采用激光刻蚀、超音速火焰喷涂、离子束沉积等方式进行表面织构蚀刻以及表面硬质涂层涂覆。仿生膨胀锥在中国石油大庆油田进行了4井次的现场试验,结果表明,与传统胀锥相比,仿生膨胀锥降低膨胀压力15%以上,表面无明显磨损痕迹,延长了使用寿命,降低了作业风险。
1.3.3仿生振动波通讯技术自然界中,沙蝎、大象等动物能感受由固体介质即大地所传导的振动波,据此进行信息传递。受此启发,研发了一种仿生振动通讯技术[16],该技术在井口安装大功率振动信号发生器作为波源,油管或套管为传输介质,将振动信号传输到井下,井下工具接收到振动信号并进行解调处理,实现地面和井下无线传输,技术原理和振动信号发生器如图6所示。
1.4油藏领域纳米机器人是仿生信息感知和传递的典型代表。纳米级机器人随着注入流体进入油藏中,记录分析油藏压力、温度以及流体形态,并将这些信息储存在随身内存中,之后纳米级机器人从产出流体中被分选出来,进而提供了在油藏旅途中提取的重要信息。沙特石油公司已经对纳米机器人的尺寸进行了评估,对加瓦尔油田阿拉伯-D油藏中的850块岩心进行了分析,得到了孔隙-喉道尺寸分布图,大多数孔隙喉道尺寸大于5μm。为了避免桥堵,纳米机器人的尺寸应为孔隙喉道的约1/4。目前,纳米颗粒注入试验以及软件模拟等工作已在进行中[17-19]。此外,国内外近年来提出了仿生形状记忆聚合物材料(ShapeMemoryPolymer,简称SMP)[20,21],利用SMP材料能够在转变温度控制下随意变形的特性,设计了结构简单、座封可控的仿生封隔器,座封过程不受井下流体性质影响,胶筒尺寸可定制,并且通过调节SMP的转变温度,可适应不同井下温度,以满足不同井深条件下的完井需求。除了硬件,还出现了“软性”仿生研究成果。例如,中国科学院王守觉院士提出了“仿生模式识别”的概念,将传统模式识别的“区分”事物转变为“认识”事物,使之更接近人类“认识”事物的特性[22]。石油工作者将这一理论应用到了油气管道工况识别中,在样本较少的情况下取得了较高的识别准确率[23]。
2石油工程仿生学发展展望
目前,仿生学虽然已经在石油工程领域取得了一定的研究成果,有些甚至已经在油田现场试验,但仿生学与石油工业的结合依然只是“星星之火”,没有达到燎原之势。为了系统、全面地推动仿生学与石油工程的融合,向自然界寻找推动石油工业进步的灵感和启发,2009年中国石油勘探开发研究院成立了中国第一个石油工程仿生研究部门,开展仿生学在石油工程中的应用研究。
2.1建立石油工程仿生学的必要性经过几年探索,笔者所在的石油工程仿生研究部门开展了仿生泡沫金属防砂、非光滑表面、仿生振动波传输等多项研究,取得了阶段性成果,部分已进入现场应用阶段。总体来说,通过专项研究迅速找到了石油工程和仿生学的结合点,并从最初的研究思路转化为研究成果,成功应用于石油工程现场,解决了油田技术需求。这充分说明了开展石油工程和仿生学的结合研究是合理的、可行的,从长远来看,建立“石油工程仿生学”是非常有必要的。“石油工程仿生学”是借鉴生物系统的结构、原理、功能等特征为石油工程技术难题提供解决方案的应用科学。建立“石油工程仿生学”意味着更加系统地开展仿生学在石油工程领域的应用研究,有利于更有针对性地发掘石油工程的仿生创新源头,有利于更有目的性地开展仿生基础研究,有利于加速仿生学科研成果的应用转化,有利于仿生学思维和方法在石油工程领域的普及与传播,以点带面,促进石油工程与仿生学的全面结合。
2.2石油工程仿生学的研究特点石油仿生学研究可以分为3个阶段:生物原型阶段,数学模型阶段和工程实现阶段。首先研究生物某种功能的实现机制和结构特点;然后研究并简化其结构,抽象出物理模型,进而建立数学模型;最后采用技术手段,制备实物模型,实现对生物系统的工程模拟[24,25]。仿生学作为前沿领域,研究成果大多属探索类,注重理论性和超前性,而石油工程作为应用行业,以现场需求为驱动力,更加注重科研成果的实用性和推广性。因此,在科研实践中,石油工程仿生学应以满足生产中的技术需求为根本出发点,以改善现有的或创造崭新的技术系统为目的,有层次、分阶段地进行单元仿生或多元耦合(协同)仿生[26]研究。同时,石油工程仿生学在模仿生物的特性或功能时,要尽可能避免模仿的复杂性,要在模仿中创造(创新),研究成果与仿生原型并不一定完全相同,以期最快地解决生产实践难题,然后循序渐进地加深研究成果的仿生特性,由研究成果实用化向仿生最优化分阶段推进。根据这一特点,确定了石油工程仿生学研究和应用的2种主要方式:①需求驱动型,在石油工业的科研和生产实践中提出技术问题或功能需求,有针对性寻找并借鉴生物的同类或相似功能,经过可行性研究后开展仿生学三阶段研究工作;②源头驱动型,加强与世界仿生学研究机构之间的交流与合作,密切关注仿生学或生命科学研究的最新成果,找准其与石油工业技术需求的结合点,开展应用研究。笔者研究团队的研究成果充分体现了石油工程仿生学研究特点的适用性,验证了研究方法的合理性与可行性。例如,泡沫金属研发之初采用泡沫镍作为基材,虽然在技术上具有明显优势,但高昂的价格阻碍了推广应用,为此,继续开展研发工作,开发出不锈钢泡沫技术,使其具有了推广应用的条件;仿生非光滑表面膨胀锥技术则是充分借鉴了其他研究机构的成果,优化改进之后应用于膨胀锥,不仅解决了油田生产难题,还促进了仿生研究成果的应用转化;仿生振动波通讯技术则是在原理上借鉴了动物的通讯方式,但在实现过程中通过大幅提高信号发射强度的方式避免了高灵敏度、小信号接收器开发的复杂性,从而在最短时间内实现生产井指令由地面到井下的无线传输。
2.3石油工程仿生学的发展方向
随着石油工程仿生学系统性研究的启动,研究内容体现出了明显的方向性,但研究的深度和广度依然不足。根据石油工业的技术现状、需求和特点,以及仿生学的整体发展水平,未来石油工程仿生学应注重材料仿生、表面仿生、信息仿生和工程仿生4个方面的系统性研究,以点带面,形成涵盖勘探、开发、工程的仿生技术体系。
2.3.1材料仿生材料仿生的目的是仿制天然材料或利用生物学原理设计和制造具有生物功能,甚至是具有真正生物活性的材料。石油工程领域的材料仿生主要分为2类:①在机械、电学、化学、物理等方面具有仿生特性的主体材料,此类材料或在宏观上体现出明显的仿生特征,或通过外场刺激可调控其分子的长度、结构、化学组成、表面形貌等,进而调控材料性能,如轻质高强材料、仿生记忆材料、压电材料、可降解材料等,该类仿生材料主要用来替代石油工业中常用的钢铁、橡胶、陶瓷等,作为其核心功能部件,或作为传感器敏感元件,大幅提升现有材料、工具以及传感器的性能指标;②具有强化、修复、润滑、保护等作用的微观仿生材料,提高现有制剂性能、界面结合效果等,此类仿生材料多以添加剂的方式应用。
2.3.2表面仿生自然界许多生物体的表面结构是非光滑的,无论是陆地、海洋或是天空中的生物,其表面的不同形貌往往都是为适应不同的生活环境经过长期进化而来的,而表面仿生是在仿生对象表面实现类似生物的表面结构,从而表现出更好的表面性能。未来,石油领域的表面仿生多是对机械部件表面进行处理,重点应集中在仿生非光滑表面和仿生浸润性两个方面。加强对不同生物功能表面结构的研究和模仿,将仿生非光滑功能表面应用到大量处于恶劣环境中的设备、管线、平台中,提高运动组件的减阻、耐磨、脱附等性能,以及非动组件的防腐、防垢等特性,延长装备寿命,提高作业效率,降低安全风险;对材料表面进行仿生浸润性处理,使其具有自清洁、亲油、疏油、亲水、疏水等不同浸润性特征组合,从而衍生出新的功能特性。目前正在利用表面仿生技术对前文提到的仿生泡沫金属进行处理,利用低温等离子体表面处理技术,在泡沫金属表面涂覆一层厚度为30~40nm的聚全氟烷基硅氧烷薄膜,使其具有新的表面浸润性特征,根据需要实现疏水、亲水、疏油、亲油等不同特性组合,在工矿、石化、冶金、机械、环保等领域具有广泛的应用前景[27]。
2.3.3信息仿生信息仿生主要是对生物信息获取、大数据处理以及生物间信息沟通、协同等特性的模拟与实现。石油工程领域的信息仿生主要可分为2类:①借鉴生物在信息感知和传递方面的特性,研制新型传感或信息传递装置,提高信号采集的精度、广度及适用范围,此类信息仿生技术可用于油田生产数据的精确采集,以及信息的高效传递,从而提高油田生产状态的实时监测与控制水平;②在信息处理方面借鉴生物的大数据处理机理和方法,提高大数据处理能力和智能化水平,建立决策机制,并将其应用在地震解释、油藏认识、开发方案制定以及油田综合管理等方面,促进油田勘探开发高效运行。
2.3.4工程仿生目前,工程仿生是对生物某种功能的模仿,注重仿生功能的实现,不强调机理相似:①对生物功能的模仿和实现,此类仿生多是受某种生物功能启发,注重结构相似或生物功能的工程实现,体现生物功能的智能性,并能够满足生产实践需求。目前,石油工程领域的控制方式正在由传统的机械方式向自动化和智能化方向转变,在这一转变过程中引入工程仿生,不仅能够优化功能结构和控制方式,还能够促进功能拓展,提高作业效率和便捷化程度。②材料仿生、表面仿生、信息仿生等方面的工程实践方法。现有的诸多仿生学研究成果还局限在实验室环境,在其向工业应用转化的过程中,一方面要解决成果本身的适用性问题,另一方面需要具备切实可行的工程实践手段。
2.4发展展望石油工程与仿生学的结合依然处于初级阶段,大多数研究成果为“形似”仿生。随着生命科学研究水平的提高以及技术手段的完备,生命科学从生物结构、功能、特性等研究,逐渐深入到生命活动规律、发育规律、生命本质、生物之间和生物与环境之间的相互关系等研究。生命科学的发展加深了对生命本质的认识,不仅能够拓宽石油工程仿生研究的广度,更加深了研究深度;反之,石油工程仿生学的发展也使得人们在具体的科研实践中深化了对生物本身及其活动的理解,进一步促进生命科学研究,并将研究成果有形化[28]。此外,电子、材料、控制等学科的技术进步也将促使石油工程仿生研究成果越来越“神似”。石油工程仿生学未来发展大概可以分为3个阶段,即知识积累、成果转化和工业化应用(图7)。2020年前,为知识积累阶段,任何一个学科领域的发展,都需要长期的知识积累,其中既包括仿生学基础理论知识的积累与储备,也包括石油工程仿生学研究人才和研究方法的积累,这一阶段要不断加深对仿生学本质的认识与理解,探索并逐渐形成石油工业与仿生学的结合模式;2020年到2025年为成果转化阶段,对实验室研究成果进行简化和鲁棒研究,使之在性能或功能上能够满足现场应用的要求,形成基本完备的工程实现技术和手段;2025年后,部分研究成果在生产、成本、效率、能耗、作业工艺等方面能够满足大规模工业化应用的要求。2008年提出的仿生井概念是未来石油工程仿生发展的集中体现[17],代表了未来石油工程仿生研究成果的高度融合。未来的油井会像植物一样“生长”,像植物寻找土壤中湿润的地方一样寻找油气,一旦钻好垂直井(种植井)后,井将会“按自己的方式生长”。一个智能的分支会延伸到一块含油区域,一旦该区域水淹后,就将这个分支“砍掉”,并在另一个含油区域“长出”另一个分支,如此反复。
3结语
21世纪是各种自然科学高度综合、相互交叉、彼此渗透的时代,仿生学是沟通各学科、行业的桥梁。中国科学院中国现代化研究中心[29]指出,过去500年里,世界上先后发生了5次科技革命,目前,第6次科技革命正向我们走来。从技术角度看,第6次科技革命,可能会以生命科学为基础,融合信息科技和纳米科技,是一次“创生和再生革命”,具体包括仿生、创生、再生的“三生”技术革命,主要涉及生命和再生工程、信息和仿生工程、纳米和仿生工程等[29]。路甬祥院士指出,随着人们对生态环境关心的日益迫切,将引发过程仿生学、能源仿生学等发展[1]。师法自然,石油工程仿生学的建立和发展,不仅顺应时展的潮流,符合科学研究的规律,更满足自身发展的技术需求。“智者千算,天只一算”,实践证明,仿生学能够为石油工业的发展与创新提供更可靠、更灵活、更高效、更经济的技术系统。材料仿生、表面仿生、信息仿生、工程仿生4个研究方向,涵盖了石油工业的绝大多数生产需求,将在功能材料、表面性能、信息获取与处理、工程实现等方面为关键技术问题的突破提供创新性解决方案和技术手段,进一步推动石油工业的技术进步。
作者:刘合 杨清海 裴晓含 郑立臣 付涛 石白茹 魏松波 陈琳 单位:中国石油勘探开发研究院