本站小编为你精心准备了陶粒泡沫混凝土力学性能试验探究参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
[摘要]在前期试验研究的基础上,通过调整混凝土配合比以及在陶粒外裹水泥浆,共浇筑84块陶粒泡沫混凝土试块;对试块进行压缩试验,采用数字图像相关(DIC)技术对试件表面进行观测。研究了陶粒泡沫混凝土的破坏形态,抗压强度与密度之间的关系以及减水剂掺量、砂含泥量和陶粒外裹水泥浆对试件抗压强度的影响。结果表明:陶粒泡沫混凝土的典型破坏形态为劈裂破坏;陶粒泡沫混凝土的抗压强度和混凝土密度之间呈指数函数关系;陶粒外裹水泥浆可以提高陶粒混凝土的抗压强度,并解决陶粒在施工和运输过程中的上浮问题;陶粒泡沫混凝土的泊松比可取0.22。
[关键词]陶粒泡沫混凝土;配合比;试验;强度;破坏形态;泊松比
0引言
轻集料混凝土是指利用轻粗骨料、轻砂(或普通砂)、水泥和水配制而成的干密度≤1950kg/m3的混凝土[1]。陶粒泡沫混凝土是轻集料混凝土的一种,是用陶粒代替普通粗骨料,掺入泡沫配制而成的一种表观密度<1950kg/m3的高性能混凝土。由于陶粒内部具有独特的孔隙结构,使得配制出的陶粒泡沫混凝土与普通混凝土相比具有轻质高强、抗震性能好、保温隔热性能好等特点[2-4]。但陶粒混凝土在施工和运输过程中存在陶粒上浮问题[5-6],制约着陶粒混凝土的发展。陶粒是采用工业废渣等原材料加工而成,符合国家关于绿色节能建材的要求,是一种利废、环保、节能的新型建筑材料,是目前高性能混凝土的研究热点之一。文献[7-8]研究了泡沫混凝土密度与抗压强度的关系,但很少有人研究陶粒泡沫混凝土密度和抗压强度之间的关系。本研究在前期试验研究的基础上,通过适当调整配合比,得到不同配合比的立方体试件。通过压缩试验,研究了陶粒泡沫混凝土中减水剂掺量和砂含泥量对陶粒泡沫混凝土抗压强度的影响,得到陶粒泡沫混凝土抗压强度与混凝土密度的关系。
1试验材料
本文使用的陶粒为贵州某公司生产的黏土陶粒;水泥为市购52.5R级普通硅酸盐水泥;缓凝剂为柠檬酸钠;粉煤灰选用一级粉煤灰;发泡剂为市购动物蛋白类发泡剂;减水剂为聚羧基减水剂,浓度≥10%;水采用自来水。
2试验方法
2.1物料配合比本试验
基于前期研究及试验时的情况,为探明砂含泥量、减水剂、陶粒外裹水泥浆对陶粒泡沫混凝土力学性能的影响以及陶粒泡沫混凝土抗压强度与其密度之间的关系,通过适当调整配合比,得到表1~4所示物料配合比。采用表1~4中的配合比,共浇筑84块立方体试件,试件设计边长为100mm,在自然条件下养护28d后进行力学性能试验。
2.2试验方法及装置压缩试验加载装置
采用RMT-301数显压力试验机(1500kN),通过位移加载,持续加载至试件破坏。同时采用数字图像相关(digitalimagecorrelation,DIC)技术,利用相机进行连续图像采集,可以实时测出试件表面变形[9]。
3试验结果与分析
3.1试块的破坏形态陶粒泡沫混凝土试块的典型破坏状态一般为劈裂破坏且劈裂破坏面大都为垂直面,如图2a所示。图2b为破坏试件的水平位移云图,通过位移云图中的不连续可以判断裂缝的发展状况。压缩试验中试块的裂缝发展过程大致如下。1)当轴向压应力增加到30%~50%的抗压强度时,试件中的压应力较小,裂缝尖端产生应力集中,但只有少许微裂缝延伸,裂缝扩展稳定,砂浆并未开裂。2)当应力达到50%~75%抗压强度时,粗骨料界面处裂缝缓慢延伸,少量微裂缝也出现在水泥砂浆中。因为试件中裂缝扩展持续,试件内部的裂缝状态变得不再稳定。3)当应力>75%抗压强度后,粗骨料界面裂缝和砂浆中的原有裂缝扩展加速,而后贯通直至试件完全破坏。从试件受压和裂缝发展的过程看,微裂缝常出现在骨料附近处。随着应力增大,骨料附近的裂缝逐渐扩展与砂浆中裂缝交错贯通形成贯穿裂缝直到试件破坏。
3.2抗压强度与密度关系由于部分试件在浇筑、脱模和运输过程中损坏严重而未加载,剩下的67个立方体试件的密度及抗压强度试验结果如表5所示。每个试块的密度与抗压强度的散点图如图3所示,通过回归分析可以得到陶粒泡沫混凝土试块的抗压强度f与其密度ρ的关系式f=0.1939e0.00264ρ,通过判定系数R2=0.7824,关系式拟合比较好(R=0.88,接近1)。通过这个关系式,预测陶粒泡沫混凝土的抗压强度,可以找到强度与密度的最佳组合,为装配式建筑提供指导。
4结语
1)陶粒泡沫混凝土的典型破坏形态为劈裂破坏,劈裂破坏面主要为垂直面。2)陶粒泡沫混凝土的抗压强度随着混凝土密度的增加呈指数形式(f=0.1939e0.00264ρ)提高。利用该公式,可以预测特定密度陶粒泡沫混凝土的抗压强度,为装配式建筑提供指导。3)砂的含泥量和减水剂掺量对陶粒泡沫混凝土的抗压强度影响不大。4)陶粒外裹水泥浆可以增大陶粒的质量和界面强度,从而提高陶粒泡沫混凝土的抗压强度,还可解决陶粒混凝土在施工和运输过程中陶粒上浮问题。5)陶粒泡沫混凝土的抗压强度对泊松比并无明显影响,泊松比可取0.22。
参考文献:
[1]胡曙光,王发洲.轻集料混凝土[M].北京:化学工业出版社,2006.
[2]杨秋玲,马可栓.轻骨料混凝土的现状与发展[J].铁道建筑,2006(6):104-106.
[3]李强.浅析轻骨料混凝土的发展[J].内蒙古科技与经济,2009(7):213-214.
[4]扈士凯,李应权,陈志纯,等.轻骨料混凝土行业发展报告[J].混凝土世界,2015(4):18-22.
[5]杨飞,杨晓华,杨博,等.陶粒混凝土在工程中的泵送和施工应用技术[J].混凝土,2011(12):106-109.
[6]卢水良,侯志远,王芳利,等.泵送陶粒混凝土在工程中的应用研究[J].混凝土,2015(4):148-150,158.
[7]王武祥.泡沫混凝土绝干密度与抗压强度的相关性研究[J].混凝土世界,2010(6):50-53.
[8]刘殿忠,潘帅,李滋仡.密度对泡沫混凝土抗压强度的影响[J].建材世界,2016,37(2):25-27.
[9]中国建筑科学研究院.普通混凝土力学性能试验方法标准:GB/T50081—2002[S].北京:中国建筑工业出版社,2003
作者:易秋;陈红鸟;曾洲;王青原;黄兴震 单位:贵州大学空间结构研究中心