美章网 资料文库 机身干扰数值分析范文

机身干扰数值分析范文

本站小编为你精心准备了机身干扰数值分析参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

机身干扰数值分析

《空气动力学学报》2014年第三期

1计算方法

1.1桨叶/机身非定常面元

1.1.1面元基本原理除物面附近及尾流区外,旋翼流场可假设为无粘、无旋、不可压。在惯性坐标系下,连续方程可表示成速度势的函数[17],即式中SB与SW分别为物面(桨叶或机身)和尾迹涡面,n为物面外法线单位矢量,r=(x,y,z)为空间点位置。

1.1.2边界条件物面边界条件要求相对于物面的法向速度为0,远场边界条件要求物体对流体的扰动在无限远处为0,即假设物体表面由N个面元组成,尾迹涡面由Nw个面元组成,采用等强度四边形偶极子面元,则式(2)可表示成如下:

1.1.3面元压力旋翼流场确定之后,可根据非定常Bernoulli方程,通过速度势和物面速度计算压力分布。非定常项/t可通过求解物体表面速度势得到。对于机身,非定项主要来源于桨叶和旋翼尾迹的影响。桨叶影响可通过速度势直接求解,而尾迹影响为尾迹对面元的诱导速度与尾迹自身速度之积[19]。

1.2时间步进自由尾迹为求解桨叶和机身面元强度分布,在解式(5)或式(8)之前需计算旋翼尾迹。本文采用时间步进自由尾迹[12-14]。时间步进自由尾迹基于不可压假设,并把旋翼尾迹漩涡简化为直线涡线。旋翼涡量场可由三维不可压粘性Navier-Stokes方程描述,表示成速度-涡量采用有限差分近似时间和空间导数求解式(14)。涡线位置由时间步进格式求解得到。文中采用二阶精度的预估-修正格式(PC2B)[12-14]。

1.3旋翼桨叶运动方程旋翼尾迹和桨叶面元汇/偶极子分布与桨叶的挥舞运动方程紧密相连,因此在描述旋翼尾迹时需求解桨叶的挥舞运动。根据桨叶挥舞铰力矩为零建立刚性桨叶挥舞运动方程。桨叶挥舞运动可表示成一组常微分方程,并采用四阶Runge-Kutta求解[14]。

1.4桨叶面元/尾迹耦合为计算旋翼尾迹的畸变效应,采用全展涡线代替偶极子面元尾迹。旋翼桨叶由非定常面元构成,桨叶脱出的尾随涡由尾随偶极子面元构成,旋翼尾迹则由连接于尾随涡的全展涡线构成,并从桨叶尾随偶极子面元中脱出(如图1)。基于桨叶后缘Kutta条件及尾迹偶极子面元强度与涡线涡量强度等价原则,建立桨叶面元与尾迹之间的联系。偶极子面元与涡线等价原则可表示成如下。在各时间步,旋翼尾迹涡线强度由桨叶面元强度决定,同时桨叶面元的汇/偶极子强度又与旋翼尾迹涡线有关,由此确保桨叶非定常面元与旋翼尾迹的紧密耦合。

1.5旋翼尾迹/机身干扰低速前飞状态下,机身浸润在旋翼尾迹中,因此旋翼尾迹涡线将靠近机身表面。由于机身的阻塞效应,旋翼尾迹涡线靠近机身表面的速度减小,而切线速度增加,此时机身非定常压力主要来源于旋翼尾迹。由式(11)可知,非定常项由尾迹涡线移动速度和尾迹诱导速度构成,因此旋翼尾迹几何特性对旋翼尾迹/机身干扰影响显著。由于机身表面载荷与旋翼尾迹几何密切相关,因此旋翼尾迹涡线靠近机身表面的运动特性就显得非常重要[22]。为满足机身表面无穿透条件,并模拟涡线靠近机身表面的加速现象,文中采用涡线镜面法。与二维点涡镜面类似[22],尾迹涡线由两点直线构成,因此可通过涡线中点的矢量镜面得到镜像涡线,镜像涡线涡量为Γ′=-Γ(如图2)。在各时间步,通过桨叶和机身非定常面元同步求解,得到桨叶和机身的非定常气动力,而后推进旋翼尾迹,由此计算旋翼/机身非定常气动干扰。

2计算结果与分析

为验证本文旋翼/机身非定常气动干扰分析方法的准确性,文中将计算前飞状态的Maryland、ROB-IN旋翼/机身干扰下的机身非定常压力分布,并与可得到的实验值、CFD计算结果对比验证。随后分析前飞速度、旋翼与机身高度对非定常气动干扰的影响。

2.1Maryland旋翼/机身干扰本算例为前飞状态下的Maryland旋翼/机身干扰试验[23],旋翼系统由4片直径为1.65m的矩形桨叶铰接构成,桨叶线性负扭为-12°,翼型为NASARC310和RC410,弦长为0.0635m,旋翼转速为1860rpm,机身长度为1.94m,机身最大截面直径为0.254m,机身尾梁与机身截面直径之比为1∶2.5。桨毂中心与机身重心高度为0.24m。机身压力传感器分布如图。旋翼/机身干扰下的各传感器非定压力随桨叶方位角变化历程如图4。从图4中可以看出,本文计算方法计算得到Maryland旋翼/机身干扰下的非定常压力时间变化历程与实验测量值吻合较好。图4中各传感器非定常压力随方位角的变化均表现为4Ω周期波动,此倍频与旋翼桨叶片数相同,由此说明桨叶通过机身上方所产生的显著非定常干扰效应。机身头部(传感器1)非定常压力呈现出类正弦波动,主要原因为传感器1在旋翼下方,受桨叶通过性影响显著。传感器9、10在旋翼下方之外的尾梁,受到桨叶通过性影响减小,而主要受到旋翼尾迹与尾梁干扰影响,因此非定常压力呈现锯齿形状。传感器9比传感器10更靠近旋翼,因此传感器9的非定常压力受到桨叶通过性影响更显著,表现的类正弦特性更显著。传感器11、12在尾梁左右两侧,主要受到旋翼尾迹/机身干扰影响,表现出锯齿形状。从图4(b)、(c)中可以看出,传感器9的压力峰值相位超前于传感器10,主要原因为尾梁传感器9比传感器10更靠前,旋翼尾迹将先靠近传感器9。但随着诱导速度的向下作用,尾迹距传感器10的距离更小,因此负压峰值更大,旋翼尾迹/尾梁干扰更显著。从图4(d)、(e)中可以看出,尾梁左侧传感12的非定常负压峰值大于尾梁右侧传感器11,主要原因为旋翼右旋,旋翼尾迹贴近尾梁的左侧,因此对传感器12的干扰作用大于右侧的传感器11。

2.2ROBIN旋翼/机身干扰本算例为前飞状态下的ROBIN旋翼机身干扰试验[24]。旋翼系统为2MRTS(2-MeterRotorTestSystem)缩比旋翼[25],机身为流线型机身。2MRTS旋翼由4片矩形桨叶铰接构成,桨叶半径为0.861m,弦长为0.0663m,线性负扭为-8.0°,翼型为NACA0012翼型,旋翼转速为2000r/min,前进比为μ=0.151。机身长度为1.999m,桨毂与机身重心垂直距离为0.322m,旋翼周期变距由风洞试验据得到[25]。各片桨叶由弦向60段和展向20段面元组成,旋翼系统共由4800个面元构成,ROBIN机身由10842个面元组成。机身头部、发动机舱、尾梁、机身左右两侧压力传感器分布如图5所示。ROBIN旋翼/机身干扰下的旋翼尾迹如图6所示,从图中可以看出,旋翼左右两边形成比较明显的桨尖涡。由于机身的排斥作用,旋翼中间尾迹向上、左右两侧移动,但尾梁后段仍然浸入在旋翼尾迹中,因此将产生显著的旋翼/机身干扰。桨叶/机身压力分布如图7所示,机身头部和发动机舱前、后缘部分产生较大压力。前飞状态下,由于旋翼前行边和后行边桨叶相对来流的非对称,因此需通过周期变距改变桨叶的桨距以保证整机左右平衡,并由此导致前行边和后行边桨叶气动环境、桨叶脱出涡量不一致,从而引起旋翼尾迹的非对称。由于旋翼尾迹非对称和桨叶位置的变化,导致机身前后、左右两侧压强非对称,由此产生时变载荷。ROBIN机头顶部、发动机顶部、尾梁顶部、机身两侧非定常压力随桨叶方位角变化如图8。从图8中可以看出,本文计算方法计算得到ROBIN旋翼/机身干扰下的各传感器非定常压力间变化历程与实验值[24]和CFD计算结果[4,26]比较吻合,由此验证本文计算方法的可靠性。由于旋翼系统采用4片桨叶,因此图8中各传感器非定常压力随方位角变化历程均呈现4Ω的周期特性。从图5可以看出,各传感器均位于旋翼下方,因此各传感器非定常压力主要表现为桨叶通过性影响。为反映机身各处压力的变化特性,机身各传感器非定常压力峰值相位和幅值如表1.从表1可以看出,机身头部传感器6非定常压力峰值出现在桨叶通过机身后,而发动机舱传感器22和尾梁顶部传感器15非定常压力峰值出现在桨叶未通过机身前,主要原因为机身头部距离桨尖平面距离更大,阻塞效应较小,且存在阻塞滞后,并由此导致机身头部非定压力幅值小于尾梁顶部。由于传感器22处于桨根下方(图5),因此受桨叶通过性的影响小于传感器15。由于桨叶右旋转,导致机身左侧流场阻塞,机身右侧流场扩展,由此导致左侧传感器13的压力幅值大于右侧传感器19,且右侧峰值相位滞后与左侧。由于机身头部、尾梁、机身左、右侧非定常压力幅值与相位的差异导致机身力与力矩的非对称,由此产生4Ω周期激励载荷。

2.3前飞速度对旋翼/机身干扰影响以ROBIN旋翼/机身干扰为基本算例,分析前飞速度对机身非定常压力的影响。从图9中可以看出,随着前飞速度的增加,旋翼载荷增加,桨叶通过性对机身非定常压力影响增加,由此导致机身头部、发动机舱、机身右侧压力幅值均增加,且随着前飞速度增加,压力幅值增加速率增加。但尾梁传感器15压力幅值随前飞速度的增加而先加后减小,原因为前飞速度较小时,尾迹/尾梁干扰显著,速度增加导致尾迹对尾梁的诱导非定常项影响增加,因此压力幅值增加,但随前飞速度的继续增加,尾迹距尾梁的距离增加,因此对尾梁的影响减小。机身与发动舱连接处传感器19的压力幅值随前飞速度增加而减小,原因为传感器在前行桨叶下方,前飞速度增加,为满足配平条件,需减小前行桨叶桨距,前行桨叶桨根载荷减小,因此旋翼桨叶通过性影响减小。

2.4旋翼与机身距离对旋翼/机身干扰影响以ROBIN旋翼在前进比为0.15状态下为基本算例,旋翼与机身高度分别增加5%、10%、15%、20%、30%后机身各部分压力幅值的变化如下。从图11中可以看出,随着旋翼与机身距离的增加,桨叶通过性对机身非定常压力影响减弱,由此导致机身头部、尾梁顶部、机身左右侧各处压力幅值均减小。随着旋翼与机身距离的增加,压力幅值减小速率逐渐减小,距离增加20%,传感器幅值减小为参考值的80%以下。但发动机舱顶部传感器幅值随旋翼与机身距离的增加而先减小后增加,主要原因为旋翼与机身距离的增加,桨叶通过性影响减小,因此压力幅值先减小;旋翼与机身距离的继续增加,方位角为270°处桨叶的桨尖涡将贴近发动机舱顶部,由此导致压力幅值增加。

3结论

(1)本文基于非定常面元/全展自由尾迹建立了旋翼/机身非定常气动干扰分析方法,计算得到Mar-yland、ROBIN旋翼/机身干扰下的非定常压力时间历程与实验测量值和CFD计算结果均吻合较好,验证了本文方法的准确性。(2)在旋翼/机身干扰下,机身各处非定常压力呈现出桨叶片数倍频的周期波动。由于旋翼旋转方向、机身阻塞效应及尾迹干扰等影响,机身前后、左右压力幅值和相位存在差异,由此产生周期的气动载荷。(3)在旋翼/机身干扰下,旋翼下方的机身头部、中部及尾梁前部的非定常压力主要受桨叶通过性影响,而尾梁后部非定常压力主要受到旋翼尾迹/机身干扰影响。(4)随前飞速度的增加,旋翼载荷和尾迹强度的增加,桨叶通过性影响增强,导致机身大部分非定常压力幅值增加;由旋翼尾迹移动速度增加,导致尾梁非定常压力幅值随前飞速度先增加后减小。(5)旋翼与机身距离增加,机身受桨叶通过性影响减弱,机身和尾梁非定常压力幅值减小。

作者:谭剑锋王浩文单位:清华大学航天航空学院