本站小编为你精心准备了蓄热式氧化炉处理有机废气原理探析参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
《工业锅炉杂志》2016年第5期
摘要:
从热力学的角度对蓄热式氧化炉系统加以分析,了解了蓄热体在热力系统当中的巧妙应用,从而更加明确了余热炉等各组成部分的设计方向。
关键词:
蓄热式氧化炉;有机废气;系统;设计
0引言
在印染、印刷、电子、有机材料等行业的生产过程中存在材料烘干的工序。烘干过程中会挥发出一定量的有机物混合在热空气中形成有机废气排出,严重污染环境,然而这些有机物均为可燃物质,排放也是一种能源浪费。蓄热式氧化炉就是处理这些废气的一种产品,它将废气中的有机成分燃尽,并将产生的热量反馈回生产线,实现节能环保的目的。此项技术源于国外,近些年来在国内也得到广泛的应用,系统的设备组成与工艺流程也在不断变化。我公司已为多个RTO项目配套导热油炉、换热器等设备。如果对整个RTO系统有详细的了解,更有利于提高产品的设计性能,与整个系统实现更完美的匹配。RTO的工艺流程常根据蓄热塔的数量不同而变化,双塔式RTO是一个基本型(见图1),多塔式RTO由双塔式发展而来。笔者现以一个双塔式RTO的项目实例来说明此系统的设计原理。
1项目概述
某印染厂利用有机溶剂将染料溶解,有机溶剂由甲苯、丁酮和乙酸甲酯组成。溶解后的染料通过涂布生产线附着在塑料薄膜上,薄膜上同时也附着了有机溶剂。工厂配备了燃煤有机热载体炉,利用导热油带散热片,将热量转化成热风,最后在烘箱中利用热风将薄膜上的有机溶剂烘干气化,脱离薄膜,从而得到了生产所需的产品。另一方面,大量有机溶剂成为气态,混合在热风里成为有机废气等待处理。该工厂内有多条生产线。每条生产线均有一个有机废气的出口。该印染厂的RTO工艺流程见图2。双塔式氧化炉结构简图见图3。
2关键参数
充分了解有机废气中各组份的理化参数是设计的关键。参数见表1。
3热平衡及节能计算[1]
3.1求废气燃烧后的烟气成分比例
根据下列反应方程式进行计算,部分计算结果见表2。C7H8+9O2=7CO2+4H2OC4H8O+6O2=4CO2+4H2O2C3H6O+9O2=6CO2+6H2O
3.2求废气燃烧温度
根据废气燃烧后生成的烟气成分制定焓温表[2],见表3。废气燃烧每小时产生的热量为:62.5×42257+125×34612+62.5×23220=8418870(kJ/h)我们发现有机成分燃尽产生的热量只能使烟气升高约138℃。这时蓄热塔的作用开始体现。塔内蓄热体由带孔陶瓷砖组成,蓄热塔分为A、B两区。在系统启动时先采用轻油辅助燃烧将陶瓷加热,废气通过陶瓷砖的孔洞吸收了砖的热量之后,温度升高至设定的712℃。废气在这个温度下自燃,释放出热量,使烟气温度达到目标值850℃。分解后的高温烟气从B区蓄热体经过,将热量传给B区的陶瓷砖,自身温度降至170℃并排放。随着辅助燃烧器的关闭,A区温度由于有废气的冷却作用,不断降温;而B区温度逐渐升高,系统排放温度也逐渐升高。当排放温度超出设定值180℃时,烟气切换阀动作,废气改从B区进、A区出,形成稳定循环的工作状态。
3.3求蓄热陶瓷的理论用量
可以发现,蓄热体可灵活转换的热量应有能力把烟气从160℃加热到712℃。查焓温表可得到此部分热量为35253MJ/h。作为相互传热的陶瓷与烟气,两者的参数一直在变化,每个切换周期内不同时段的传热率也一直变化。为了便于计算,首先要设定切换频率,并假设温度区间参考计算。该项目切换周期设定2min,2min的时间内传热量应为1172MJ。蓄热砖的参考温差取340℃,陶瓷比热0.84kJ/kg•℃,计算可得单区蓄热砖的理论最小重量为4104kg。
3.4节能计算
烟气排放的热损失通过热力计算可得1214MJ/h,散热损失根据锅炉的经验定为1.3%。则损失的热量总计为1323MJ/h,可用热量为7091MJ/h。余热的利用方式为:从A、B两蓄热区的炉膛空间内,将高温烟气引出,带余热利用设备。根据焓温关系反算可得,高温烟气的引出量为7150m3/h(标态)。由此可知,该RTO系统在稳定工作状态下,可回收的热量是7091MJ/h。
4余热利用
根据热力计算,可从炉膛引出加以利用的最大烟气量是7150m3/h(标态),最高温度是850℃。炉膛内部压力约为2000Pa。烟气含尘量极少,属于洁净烟气。要将余热烟气中的热量转化为导热油的热量返还回车间的散热片,需要一台余热有机热载体炉。烟气的条件很好,所以锅炉可选的结构也有很多种,该项目选择的结构为翅片管错列布置形成的管束,烟气横向冲刷管束传热,卧式布置。在余热炉烟气出口安装调节风门,调节通过的烟气量。采用炉膛温度信号控制,保证炉膛内的温度满足有机成分氧化分解的要求并最大限度地供应热能,回收利用。
5控制系统
5.1炉膛温度自动调节
炉膛温度的控制是整个控制系统的关键,是废气得到充分处理的保证,而且温度的变化与多种因素有关。
(1)炉膛温度与废气浓度的关系
当废气有机成分浓度降低时,有机成分分解获得的热能降低,直接导致炉膛温度降低,可设定炉膛低温值,减小去余热锅炉的烟气量。当调节风门全关时,炉膛温度仍然低于设定值,需开启辅助燃烧器。此情况说明废气分解产生的热量已经低于系统自身的散热损失与排烟损失的总和。如果废气浓度大于设计浓度,炉膛温度会超高,可增大余热引出的烟气量调节。增大的烟气量视热载体温度需求而定。必要时做紧急排放,将一部分炉膛烟气直接排放到烟囱来降低温度。
(2)炉膛温度与余热利用的关系
过量引出炉膛烟气会导致炉膛温度降低,可通过调节风门控制。
(3)炉膛温度与废气量的关系
项目是根据系统的最大处理量来设计的,所以常遇到废气量低于设计值的情况。处理方法与废气浓度降低的方法相同。
(4)炉膛温度与蓄热体切换频率的关系
一般来讲蓄热体的质量都有较大余量,切换频率可以降低,可以维持较稳定的炉膛温度。当设计的蓄热体质量偏小时,只有提高切换频率才能提高炉膛温度的稳定性。如果切换频率与蓄热体质量不协调,很可能造成快速降温甚至熄火的情况。
5.2系统风机自动调速
系统风机将生产线废气吸入风机,然后鼓入蓄热体进入炉膛。风机变频控制,根据废气量进行调节,并满足炉膛的压力足够克服蓄热体对烟气的阻力的要求。
5.3智能报警
炉膛设置关键点的温度控制与报警;蓄热段设置多个位置的温度传感器,实时监控报警;炉膛低压报警与差压控制。
5.4相关标准
余热有机热载体炉的控制需符合《锅炉安全技术监察规程》,辅助燃烧器及系统符合相关国家标准即可。
6总结
根据现场实际的使用情况,烟囱进烟处有机物的浓度小于50mg/m3(标态),达到国家排放标准要求;废气的处理效率达到了99%。该系统的技术核心在于蓄热体与烟气的热量转换、燃烧的控制与烟气的往复切换,涉及到了燃烧学、传热学、流体力学等基础知识。整个RTO的技术并没有超出我们熟知的锅炉基础知识,但通过一些新颖的结构、部件及系统的配合,达到了理想的效果。当然RTO也有很多其他的变化值得我们钻研。
参考文献:
[1]徐旭常.周力行.燃烧技术手册[M].北京:化学工业出版社,2008.
[2]吴晓华.工业锅炉设计计算标准方法[M].北京:中国标准出版社,2003.
作者:付佐旭 单位:常州恒大锅炉制造有限公司