本站小编为你精心准备了人工神经网络数学模型的建立参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
摘要:
经过长期不懈努力,科学家认为可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。然而,客观现实世界是纷繁复杂的,非线性情况随处可见,人脑神经系统更是如此。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。因此,首先对人工神经网络进行了概述;而后重点描述BP网络模型,对其基于弹性BP算法的BP网络设计与实现;最后,对网络的训练和测试进行了简单的分析。
关键词:
人工神经网络;数学模型;策略
神经系统,是人体器官的一种较为复杂的系统。人工神经网络是对人脑的神经结构与机制进行模拟,是一种区别于符号推理以及逻辑思维的人工智能技术。人工神经网络是基于现代神经生物学和认知科学对人类信息处理研究成果的基础上研发的,用来模拟生物神经系统对真实世界的物体来做出反应。除此之外,它还属于一种大规模自适应的非线性动力学系统,具备非常强的联想记忆和自主学习能力。人工神经网络具有非线性映射、模式识别、函数逼近、聚类分析、数据压缩以及优化设计的功能,并且在稳定性、收敛性等方面都有良好的性质,被广泛应用于信息处理、模式识别、计算机视觉、优化计算、智能控制等各个领域中。
一、人工神经网络
人工神经网络,可以称之为神经网络或者链接模型,是属于一种对人脑或者自然神经网络的若干个基本特性进行抽象和模拟的网络。现阶段人工神经网络的研究成果基础是对大脑的模拟研究,是为了模拟大脑当中的某些机理与机制,实现某个方面的功能而进行专项研究的。人工神经网络具有可以充分逼近任意复杂的非线性关系,对于定量或者定性的信息会采用并行分布的处理方式,使其可以大量并且快速进行运算、适应不确定的系统和对定量以及定性信息进行同一时间的处理。人工神经网络的优越性表现在三方面,具有自主学习的能力,具有联想存储的能力,具有高速寻找并且寻找优化方式的能力。对人工神经网络的研究,可以分为理论研究和应用研究两个方面的研究。在理论研究中,可以利用神经生理与认知科学对人类的思维以及智能机理进行相关研究,还可以利用人脑神经的基础理论研究成果,用数理方法对神经网络模型进行更加完善、更加优越的探索。在应用研究方面,神经网络可以实现对软件的模拟和对硬件的科学研究。而且,神经网络在各个领域中也都得到了广泛的研究,例如模式识别、信号处理、知识工程、专家系统、优化组合以及机器人控制等领域。
现行的数理知识是建立在集合论的基础上的,随着数学阶段的发展,对于人类系统的行为,或者对于人类复杂系统,比如航天系统、人脑系统以及社会系统等方面,其中的参数和变量有很多,各种因素也是相互交错的,因此,系统是相当复杂的,相对的模糊性也会显得非常明显。就认识方面来讲,可以用模糊性这个词语来概括概念外延的不确定性。因此,模糊数学的概念应运而生,主要的研究内容包括三个方面。首先,可以对模糊数学的理论进行精确研究,其中包含着与精确数学以及随机数学的关系;其次,还需要研究模糊语言学和模糊逻辑,人类的自然语言都是具有模糊性的,人们经常会接收到迷糊语言和模糊的信息,并且可以对其做出正确的判断和辨别。因此,为了可以使得自然语言和计算机语言的直接对话,就必须把人类的自然语言和思维的过程提炼成为数学模型来对计算机进行指令,这样就可以建立模糊数学的模型样本,通过运用此种方式,建立的就是模糊数学的模型,也是运用数学方法的关键之所在。最后,研究模糊数学的应用,模糊数学的研究对象通常是以不确定的事物为主的。模糊的集合通常都是通过数学来适用描述的复杂的事物,将研究的对象数学化,将其中的不确定性很好地和抽象的数学沟通起来,达到形象生动直观的效果。
二、BP网络模型
1.BP网概述BP算法,是由PallWerbas博士在1974年首次提出的,即为误差逆传播学习算法,而对于此算法完整的提出是在1986年由Rumelhart和McCelland为首的科学家小组提出来的。后来,人们把BP算法在进行训练之前的前馈型的神经网络称之为BP网络,逐渐以其简洁、实用和高度的非线性映射能力成为流行的网络模型,在信号处理、模式识别、系统辨识以及数据压缩中都有广泛的应用。在人工神经网络的实际应用过程当中,大部分的模型会采用BP网络或者它所拥有的变化形式,属于前向网络中的基础核心部分,属于人工神经网络中的精华部分。2.BP网络拓扑结构BP网络属于一种前向型神经网络,其中的神经网络具有三层或者三层以上,可以对上下层之间的神经元进行全部的连接,也就是说下层的每一个神经元可以和上层的每一个神经元实现连接,但是在同层之间的神经元是没有办法相连的。3.BP网络的工作原理以及过程对于BP网络的学习可以有两个阶段。首先,需要学习信号的正向传播过程。当一对学习的模式进行网络提供之后,神经元的激活值就会从输入层当中的各隐含层向输出层中进行传播,并且在输出层的各个神经元内会相应地输入响应值。其次,是对正方向的传播过程进行误差的修正,如果在输出层中的输出值和预期的有偏差,就会对实际输入与期望输出之间的误差进行逐层递归的计算,计算方向会按照减小期望输出和实际输出之间的误差方向。对输出层之间的各个隐含层进行每一层的连接权进行逐层的修正,最后再回到输入层,这个循环的过程就称之为“误差逆传播学习算法”。现阶段,这种误差传播的修正方式在不断地进行创新修正,网络对应的输入模式相应的正确率也会随着算法的不断发展得到相对应地提高。4.算法流程BP的算法流程如图2。
三、基于弹性BP算法的BP网设计与实现
1.BP网络结构的设计在1989年,RobertHecht-Nielson证明了在任何一个闭区间当中的一个连续的函数都可以用一个隐含层的BP网络来进行逼近,这就导致了用一个3层的BP网络可以完成任意的从N到M维的映射。输入层节点的点数是根据样本的输入特征项来决定的,而输出的节点数是根据样本的期望输出项来决定的。在隐层节点当中,由于隐层节点的数目过多,平均的收敛速度就会变慢并且速度是极其不稳定的,这样就会增加初始权值的敏感度,网络的泛化能力也会随之降低,在对隐层节点数进行计算的时候。其中,h代表的是隐层节点数,nin代表的是输入层的节点数,则nout则代表的是输出层的节点数。当因为网络发生误差产生下降的时候,也就是E(网络误差)下降的速度非常缓慢的时候,这个时候网络的收敛水平还需要进一步提高的时候,就会增加一个隐层节点。如果遇到相反的情况,则就会减少一个相应的节点。对于BP网络的优化,主要包括以下几个步骤。首先,利用弹性BP算法来对网络的权值和偏差进行修正,利用此种算法,在很大程度上避免了使得学习(是学习)陷入局部狭小的现象,这样可以加快学习收敛的速度;其次,对于隐含的节点数可以进行随意的设定;而后,在对隐含层和输出层的激活函数之间可以在给定的5种畅通的函数当中进行随意的选择,最后就需要对输入向量的归一化了。
四、网络的训练与测试
1.训练样本的声场以及网络的构造如果采用100个样本对来进行声场训练样本对,这里的样本数据采用LINSPACE(X1,X2,N)的函数生成。在本文当中,BP网络有三层构造。在这三层构造当中,第一层采用tansig激活函数;第二层采用logsig激活函数,在第三层则需要采用purline激活函数来进行。在网络训练当中需要用Matlab神经网络工具箱当中的L-M法的trainlm这个函数来进行计算。2.网络学习以及等级的评价通过MATLAB的神经网络工具箱上建立的模型,需要将学3.网络测试成效从评价的结果上来看,运用人工神经网络的评价方法最大限度地减少了人为因素的影响,在这其中可以在很大程度上减少因为传统方式而在设计权重过程当中的不确定性,通过这种方式来对评价的对象进行自动评价。同时,BP的神经网络这种评估方式本身也具有一定的局限性,例如对网络当中的隐层节点个数难以确定,在学习训练的过程当中最容易陷入局部最优的问题,在很大程度上会影响评价结果的精准性。
五、结束语
运用人工神经网络方式有效解决多源、多类型以及多属性地址处理和分析问题,在很大程度上突破了统计数学模型对预测的约束力和限制力。应用人工神经网络进行复杂的地址信息的非线性整合处理,可以精准的对各类资料进行综合分析和归类。
参考文献:
[1]李传杰.基于模糊数学及神经网络的心理评估模型[D].山东大学,2008
[2]徐振东.人工神经网络的数学模型建立及成矿预测BP网络的实现[D].吉林大学,2004
[3]邓丽琼,朱俊.基于BP神经网络的教师课堂教学评价模型[J].国土资源高等职业教育研究,2013
[4]杨日福,闵志玲,耿琳琳等.人工神经网络建立超声耦合亚临界水提取数学模型[J].应用化工,2015
作者:常青 单位:延安大学