美章网 资料文库 径向基神经网络论文范文

径向基神经网络论文范文

本站小编为你精心准备了径向基神经网络论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

径向基神经网络论文

1本文提出的方法

EL检测原理与检测系统在文献[1]中有详细的描述。本文采用该文献中的方法对太阳能电池片的EL图像进行采集。图1(a)、(b)、(c)分别表示由CCD采集的一块大小为125bits×125bits的虚焊缺陷图像、微裂缺陷图像和断指缺陷图像。图1(d)是无缺陷太阳能电池组图像,它包含36(6×6)块大小为125bits×125bits的太阳能电池片图像。本文提出融合主成分分析(PCA)改进反向传播神经网络(BPNN)方法和径向神经网络(RBFNN)方法对太阳能电池缺陷电致发光图像进行处理,主要包括图像采集、PCA特征提取降维、神经网络分类训练、预测输出等部分,如图2所示。

1.1PCA处理输入数据当BPNN和RBFNN的输入是太阳能电池板缺陷图像集时,图像是以向量的形式表示。向量维数太大将不利于网络的计算。我们采用主成分分量分析(PCA)算法[15]来提取该向量的主要特征分量,既不损失重要信息又能减少网络的计算量。PCA是基于协方差矩阵将样本数据投影到一个新的空间中,那么表示该样本数据就只需要该样本数据最大的一个线性无关组的特征值对应的空间坐标即可。将特征值从大到小排列,取较大特征值对应的分量就称为主成分分量。通过这种由高维数据空间向低维数据空间投影的方法,可以将原始的高维数据压缩到低维。假设数据矩阵Xn×p由样本图像组成,n是样本数,p是样本图像的大小。若Xn×p的每一行代表一幅样本图像,则Xn×p的PCA降维矩阵求解步骤如下。

1.2创建BPNN模型和RBFNN模型太阳能电池缺陷种类很多,不同缺陷类型图像具有不同特征。对太阳能电池缺陷图像求其主成分分量作为BPNN的输入,缺陷的分类作为输出,输入层有k个神经元(降维后主成分分量个数),输出层有1个神经元(缺陷的分类向量)。隐层的节点数可以凭经验多次实验确定,也可以设计一个隐含层数目可变的BPNN。通过误差对比,选择在给定对比次数内误差最小所对应的隐含层神经元数目,从而确定BPNN的结构。一般来说,3层BPNN就能以任意的精度逼近任意的连续函数[16]。本论文选择3层BPNN,结构为k-m-1,m为隐含层节点数。为了使网络训练时不发生“过拟合”现象,设计合理BPNN模型的过程是一个不断调整参数对比结果的过程。确定BPNN结构后,就可以对该网络进行训练。训练函数采用Levenberg-Marquardt函数,隐含层神经元传递函数为S型正切函数tansig,输出层神经元函数为纯线性函数purelin。调用格式:net=newff(Y,T,[m,1],{‘tansig’,‘purelin’},‘train-lm’);Y为神经网络的输入矩阵向量(PCA降维后的矩阵向量),T为神经网络的输出矩阵向量。Matlab自带4种主要的函数来设计RBFNN:newrbe,newrb,newgrnn,newpnn。本文用相同的训练样本集和测试样本集创建和测试了这4种网络,其中,用newgrnn创建的网络识别率最高,因此选用广义回归神经网络newgrnn来创建RBFNN:(1)隐含层径向基神经元层数目等于输入样本数,其权值等于输入矩阵向量的转置。(2)输出层线性神经元层,以隐含层神经元的输出作为该层的输入,权值为输出矩阵向量T,无阈值向量。调用格式:net=newgrnn(Y,T,Spread);Y为神经网络的输入矩阵向量(PCA降维后的矩阵向量),T为神经网络的输出矩阵向量,Spread为径向基函数的扩展速度。

1.3太阳能电池缺陷的检测算法(1)数据映射。取每种类型缺陷图像的60%和40%分别作为BPNN和RBFNN的训练样本集和测试样本集。将样本集中每张图片变成矩阵中的一列,形成一个矩阵,采用2.1节中的方法对该矩阵进行PCA降维后的矩阵作为BPNN和RBFNN的输入。将虚焊、微裂、断指和无缺陷4种不同类型图像分别标记为1,2,3,4,作为网络期望输出T。(2)数据归一化。将输入输出矩阵向量归一化为[-1,1],利于神经网络的计算。(3)分别调用2.2节中创建的BPNN和RBFNN,设置网络参数,利用训练样本集先对网络训练,然后将训练好的网络对测试样本集进行仿真,并对仿真结果进行反归一化。(4)最后将仿真预测输出分别和图像1,2,3,4比较,差值的绝对值小于阈值0.5认为预测正确。阈值是根据网络的期望输出选择的,以能正确区分不同缺陷类型为宜。识别率定义为正确识别的数量和样本数的比值。

2实验内容与结果分析

为了验证本文方法的有效性,我们通过CCD图像采集系统采集了1000张太阳能电池板EL图片,包括250张虚焊样本、250张微裂样本、250张断指样本、250张无缺陷样本,大小为125bits×125bits。我们利用图片组成的样本数据集进行了大量的实验,将每种类型缺陷图像的60%和40%分别作为BPNN和RBFNN的训练样本集和测试样本集。算法测试硬件平台为Inteli5750、主频2.66GHz的CPU,4G内存的PC机,编译环境为Mat-labR2012b。由于样本图像数据较大,需采用2.1节中的PCA算法进行降维处理。对样本图像集降维后,得到神经网络的输入矩阵。但是,随着样本数的增加,占有主要信息的主成分维数也在增加。因此,分别采用占有主要信息60%~90%的图像作为BPNN的输入,对应的降维后的主成分维数k为BPNN输入层节点数。由于BPNN的结果每次都不同,所以运行50次,保存识别率最高的网络。图3是在不同样本集数下的PCA-BPNN的最高识别率。其中,样本数n=1000时的PCA-BPNN识别率如表1所示。同时网络参数设置也列在表1中。隐含层中的最佳节点数是采用经验公式所得[17]。从图3和表1中可以看出,当维数降至20维(占主要信息70%)、总样本数为1000(测试样本400)时,4种类型总的最高识别率为93.5%。在相同的训练样本集和测试样本集上,采用与BPNN同样的输入和输出,在不同样本集数下,PCA-RBFNN的最高识别率如图4所示。其中,样本数n=1000时的PCA-RBFNN识别率如表2所示。参数Spread的设置也列在表2中,首先设定Spread为1,然后以10倍的间隔速度递减。从图4和表2中可以看出,样本数为1000(测试样本400)时,PCA维数降到15(占主要信息65%),总的最高识别率为96.25%。两种网络的测试样本集最高识别率对比分别如图5和表3所示。图5(a)、(b)分别为采用PCA-BPNN与PCA-RBFNN方法时测试样本集中的4种缺陷样本图像的期望值与预测值。表3列出了两种方法的具体识别结果。从表3可以看出,两种方法对虚焊缺陷识别率均较高,分别为99%和100%;微裂缺陷识别率较低,分别为89%和92%。这是因为虚焊缺陷面积较大,颜色较深具有显著特点;而微裂缺陷面积较小,与背景对比不强烈,导致错误分类。采用本文提出的BPNN和RBFNN方法处理一幅750×750大小的图像大约分别需要1.8s和0.1s,PCA降维的时间大约为0.02s。将上述两种方法与FCM[18]及ICA[3]方法进行比较,结果如表4所示。可以看出,RBFNN方法具有较高的识别率和较短的计算时间,更适合于在线检测。

3结论

根据现代太阳能电池板高质量的要求,提出了表面缺陷的PCA-RBFNN检测方法,并与PCA-BPNN在网络构建、参数设置、识别结果及计算时间方面进行了对比。结果表明,RBFNN具有较高的识别率和较短的计算时间,更适宜在线检测。BPNN和RBFNN随着样本数的增加其识别率也会相应增加,所以样本数据库的完善会提高神经网络识别率。

作者:沈凌云朱明陈小云单位:中国科学院长春光学精密机械与物理研究所中国科学院大学长春理工大学电子信息工程学院