本站小编为你精心准备了批量评估的神经网络论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1基于BP网络估价模型的构建
1.1估价指标体系的构建及其量化标准本文以城市住宅为研究对象,构建住宅类的价格评估模型。影响城市住宅价格的因素较多,归结起来可以分为3类,分别为:个别因素、区域因素和一般因素。在一定时期内,宏观环境较为稳定,一般因素对个体价格差异的影响较小,所以可以将一般因素剔除不计,重点分析个别因素和区域因素对房价的影响。通过查阅文献,归结出9个因素:地段等级、交通状况、配套设施、环境质量、建筑结构、成新度、装修情况、朝向、楼层。在因素评分中,可根据专家打分法,先将特征因素从好到坏分为5个等级:优、较优、一般、较差、差。再将其进行量化处理,可分别赋值为1、0.75、0.5、0.25、0,介于上述等级之间的,可根据具体情况赋值。文中所收集数据样本来源于昆明市西山区已成交案例。在收集样本过程中,为保证数据质量,尽量收集近期已成交案例,时间间隔不超过1个月,且已经排除非正常交易案例,故文中不考虑房屋价格受交易情况及交易时间的影响。网络的输出要求为0~1之间连续的数值,而收集到的价格为实际成交价格,为使之与网络输出相一致,应对成交价格进行数据标准化处理。本文所采用的数据标准化处理方式为归一化处理方法。在本文中特征因素值已在0~1之间,所以只需将成交价格数据进行标准化处理即可。
1.2网络结构的确定
1.2.1输入层节点数的确定输入层的节点个数由房屋价格影响因素的个数确定,文中将选取上述所列的9个影响因子作为网络的输入,即文中输入层节点数确定为9个。
1.2.2隐含层节点数的确定增加隐含层神经元个数可以提高网络的训练精度,但也不是隐含层节点数越多越好,同一个网络模型在隐含层节点数达到最优后不再随节点数的增加而出现训练误差越小的情况。一般在实际中往往依靠经验和反复试验进行确定节点数,即对同样的网络结构设置不同的隐含层节点数,分别进行训练,当训练结果误差最小且训练步数最少时网络隐含层节点数达到最优。
1.2.3输出层节点数的确定模型要求输出数据为房屋的预测价格,因此,输出节点数确定为1。
2应用研究
2.1估价模型的训练从所采集样本中抽80%作为网络的训练样本。用newff()函数建立网络,此函数可以将网络初始化,自动选择权值和阈值[6]。文中采用反复训练法来选取最优的隐含层神经元数,分别设计隐含层的节点数为10、20、30、40、50。本文所创建的网络代码如下:net=newff(minmax(P),[a,1],{''''tansig'''',''''logsig''''},''''traingdx'''')其中a代表不同的隐含层节点数,tansig代表隐含层的激活函数,logsig代表输出层的激活函数,算法选择动量和自适应lr的梯度下降法traingdx。其他网络训练参数设为。经过网络测试,当隐含层节点数设为30时,训练次数及均方误差达到最小值,所以,文中确定网络隐含层节点数在30时达到最优,即建立一个9—30—1的网络模型。文中利用MATLAB中的神经网络工具箱对模型进行模拟运算,以下为隐含层节点数为30时MATLAB进行逼近的界面图。图2表示网络经过138个循环训练后,计算输出与目标输出的误差为8.87e-004,小于预先设定的目标误差,即网络训练成功。图3反映了训练样本实际值与计算值的线性回归,R值达到0.99746,表明实际值与计算值之间实现了合理准确的线性拟合。
2.2网络测试网络模型训练成功后需进一步测试,才能确定模型是否可用于其他类似房屋的价格评估。经过对剩余20%的测试样本进行测试,相对误差最大为0.33%,最小为0.076%,都在1%以内,可以判定,该模型通过测试,网络可以满足对类似大批量的房屋进行价格评估。
3结束语
本文将BP神经网络应用于房地产价格的批量评估,构建了房地产批量评估流程及评估模型,运用昆明市已成交房屋数据对网络进行训练和测试,研究表明,可将训练成功的网络模型用于评估同类型大批量房屋的市场价格,避免了传统估价作业花费时间长、成本高的特点,减少了主观思想对评估结果的影响,为以后房产税的开征提供技术支持。然而,批量评估也是建立在传统单宗评估的理论基础之上,对于部分房屋数据缺失的实例则需结合传统的估价方法,另外进行评估。
作者:李菊杜葵单位:昆明理工大学土木工程学院