美章网 资料文库 动力电池神经网络论文范文

动力电池神经网络论文范文

本站小编为你精心准备了动力电池神经网络论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。

动力电池神经网络论文

1神经网络和电池SOC简介

1.1BP神经网络简介神经网络由大量简单的单元构成的非线性系统,具有非线性映射能力,不需要精确的数学模型,擅长从输入输出数据中学习有用知识[7]。神经元是神经网络基本单元。神经元模型如图1所示。由连接权、加法器和非线性激活函数这3种元素组成。1986年,Rumelhart及其研究小组在Nature杂志上发表误差反向传播(errorback-propagation)算法[8],并将该算法用于神经网络的研究,使之成为迄今为止最著名的多层神经网络学习算法———BP算法[9]。由该算法训练的网络,称为BP神经网络。BP神经网络是一种正向的、各层相互连接的网络。输入信号首先经过输入层传递给各隐含层节点,经过激发函数,将隐含层节点的输出传递到输出节点,最后经过再经过激发函数后才给出输出结果,若输出层的输出和期望输出之间的误差达不到要求,则转入反方向传播,将误差信号沿原来的连接通路返回,通过修个神经网络各层的权值,使过程的输出和神经网络的输出之间的误差信号达到期望值为止[10]。

1.2电池SOC的定义动力电池的剩余电量,是指电池在当前时刻,达到放电截止电压前可以使用的电量。目前,国内外普遍采用荷电状态来表征电池的剩余容量[11]。电池的荷电状态(SOC)是电池的剩余电量与电池的额定电量的比值。

1.3影响电池SOC的因素动力电池是一个非线性系统,其中电池的荷电状态受到很多种因素的影响,主要包括电池的充/放电倍率、自放电、环境温度以及电池的工作状态等因素。(1)电池的充/放电倍率电池的放电电流的大小,会影响电池的容量。在其他条件相同的情况下,电池的放电容量会随着放电倍率的增加而降低[12]。(2)自放电自放电又称荷电保持能力,指在一定的条件下,当电池处于开路状态时,电池对电量的储存能力。电池在自放电的作用下,SOC值会随着存储时间的增加而减小。(3)温度首先,锂离子电池正常工作的温度有一定的要求。动力电池的使用环境温度发生变化时,电池的可用容量也会随之发生变化。在温度较低时,电池活性较低,电池可用容量降低;当温度升高时,电池活性增强,可用容量也随之增多。因此,在预估电池的荷电状态时,需要考虑到电池的温度的影响。

2神经网络SOC估计器设计

2.1实验数据的获取本研究的实验数据是在ADVISOR2002汽车仿真软件上仿真得到的。ADVISOR(AdvancedVehicleSim-ulator,高级车辆仿真器)是由美国可再生能源实验室,在Matlab/Simulink软件环境下开发的高级车辆仿真软件[13]。该软件的界面友好、源代码完全开放,目前已经在世界范围内广泛使用。ADVISOR采用了前向、后向相结合的混合仿真方法。后向仿真方法是在假设车辆能满足道路循环的请求行驶轨迹(包括汽车行驶速度、道路坡度和汽车动态质量)的前提下,计算汽车中各个部件性能的仿真方法,前向仿真是根据驾驶员行为调节部件,使得车辆各部件跟随路面循环工况[14]。本研究在ADVISOR软件搭建了某国产电动汽车的仿真平台。整车的主要技术参数如表1所示[15-16]。模拟行驶程序使用的测试路程是ECE工况、UDDS工况和HWFET工况混合行驶工况,其速度与时间关系曲线如图2所示。ECE工况、UDDS工况和HWFET工况均被广泛应用于电动汽车性能测试。其中ECE工况为欧洲经济委员会汽车法规规定的汽车测试循环工况。ECE工况是用来测试车辆在城市低速道路下车辆的循环工况。其循环时间为195s,车辆行驶的路程为0.99km,最高车速为50km/h。UDDS工况是美国环境保护署制订的城市道路循环工况,用来测试车辆在城市道路下行驶的各种性能的循环工况。其循环时间为1367s,行驶路程为11.99km,最高车速为91.25km/h。HW-FET工况为美国环境保护署制订的汽车在高速公路上的循环工况,用来测试汽车在高速道路上车辆行驶的循环工况,其循环时间为767s,行驶路程为1.51km,最高车速为96.4km/h。在搭建的仿真平台上,本研究进行了仿真,其中电动汽车使用的电池为锂电池。虚拟电动汽车共行驶了2329s,行驶的距离为14.49km。对电动汽车的电池的充放电电流、电池温度和电池的SOC进行采集,得到结果如图3~5所示。

2.2数据预处理根据前文的分析,本研究的神经网络模型训练数据选择如下。本研究选择动力电池的充放电电流和电池的温度作为动力电池神经网络的输入,电池的SOC作为神经网络的输出。在对神经网络训练之前,对训练数据进行归一化操作。归一化操作可以避免各个因子之间的量级差异,加快BP神经网络训练的收敛,减少计算难度。对数据进行如下操作。

2.3动力电池SOC神经网络的训练SOC估计是根据动力电池的电流、温度的数值得到电池的SOC数值。使用神经网络设计估计器的目的是为了能够逼近函数。本研究使用了BP神经网络模型来逼近动力电池的电流、温度和SOC之间的关系,其中BP神经网络的隐含层选择tansig函数。学习算法使用基于数值最优化理论的Levenberg-Marquardt算法作为神经网络的学习算法。

3实验验证及结果分析

为了验证模型的有效性,本研究采用了另外3种工况混合的行驶工况的实验数据作为测试样本数据来验证本研究得到的神经网络模型。这3种工况分别是:普锐斯工况(Prius工况,该种工况用来测试丰田普锐斯混合动力汽车的行驶工况),CYC_Nuremberg_R36工况(该种工况用来测试德国纽伦堡市36路公共汽车线路工况)和CYC_US06工况(该种工况用来考察测试车辆在高速情况下的行驶状况)。以上3种工况基本上能够模拟出汽车在城市中行驶的加速、减速、低速和高速行驶的各种工况,测试混合工况如图6所示。本研究对得到的测试数据同样进行归一化处理。模型的输入为电池的电流和温度,模型的输出为SOC值。最后,得到的电池SOC的实际值和经过神经网络得到的SOC估计值如图7所示。通过求神经网络模型的输出值和真实值之间的误差值,来评价本研究的神经网络模型的精度。其计算公式如下式所示。得到的神经网模型的估计值与动力电池SOC的真实值之间的误差如图8所示。通过图8可以看出,神经网络估计器的估计值与电池SOC的真实值之间绝对误差的最大值为4%左右,符合动力电池对SOC预测的精度要求。

4结束语

本研究利用反向传播神经网络模型(BP神经网络)对动力电池的荷电状态(SOC)进行估计,研究了动力电池的充放电电流、电池温度和电池SOC之间的关系。本研究采用了目前使用广泛的ADVISOR仿真软件,通过搭建仿真平台,将ECE、UDDS和HWFET3种典型工况混合仿真,采集得到电池的电流、温度和SOC等参数。BP神经网络的输入是通过ADVI-SOR仿真平台采集得到的电流值和温度值,输出是通过仿真平台得到的动力电池的荷电状态(SOC)。最后得到的神经网络模型的输出估计值与真实值之间的误差的最大值为4%,符合电池SOC估计精度的要求。

作者:蔡信李波汪宏华聂亮单位:国网浙江省电力公司电动汽车服务分公司