本站小编为你精心准备了气氛智能控制论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1控制模块设计
1.1控制模块的硬件设计控制模块选用了STM32F107VC32位ARM处理器[1],此芯片集成了各种高性能工业标准接口,且STM32不同型号产品在引脚和软件上具有完美的兼容性,可以轻松适应更多的应用。MCU本身包含有标准RS23,ISP及USB通讯接口,运行频率高达72MHz,因而使得系统能够以精简的设计,高速的数据处理速度完成智能控制。STM32系列单片GPIO口多达51个,大部分可复用,本模块中所配置GPIO口包括:RS232通讯接口PB10,PB11,连接图2中Flow_TXD,Flow_RXD,传输流量传感器检测信号;ISP三线通讯接口PC9,PC10,PC11,对应图3中PV_CS,PV_SLCK,PV_DIN信号;PC8输出切换信号。控制模块选用的流量传感器为FS4001系列小流量气体质量流量传感器。FS4001是专门为各类小流量气体的测量和过程控制而设计的,其独特的封装技术使之可用于各类管径,成本低、易安装、不需要温度压力补偿,可替代容积式或压差式的传统流量传感器,其精度达到±(1.5+0.5FS)%,重复性达到±0.25%,1mm通径传感器,最大流量达到200SCMM。FS4001与MCU通过RS232接口进行通讯,经过MAX3232实现电平转换后,按照专用通讯协议,可完成FS4001自校准以及流量读取。接口电路见图2。STM32F107VC对测得流量和设置流量之差进行比较以及控制算法的计算后,将控制数字量输出至DA芯片LTC2641,DAC将数字量转换成模拟控制量,经低功耗、精密单电源运算放大器OPA2234及放大管2N3904将信号放大后驱动比例阀,完成流量的控制。控制模块中的DAC为单极性LTC2641,此芯片仅消耗120μA电源电流,就满标度阶跃而言,仅用1μs就能稳定在0.5LSB以内。DAC通过3线SP兼容串行接口,以高达50MHz的时钟速率通信,其6位INL误差最大值在整个温度范围内为仅±2LSB。DA转换及比例阀驱动电路见图3。控制模块中比例阀选用VSO?系列热补偿型微型比例电磁阀[2],通过VSO技术(voltagesensitiveorifice),即电压敏感性通径技术,比例阀可以根据输入电流的大小,精确的控制气体流量比例。比例阀通过直流电流驱动或脉冲调幅驱动,并使用闭环反馈控制,能够获得优化的系统性能。本模块中的比例阀线圈最小工作电压20VDC,控制电流范围在0~91mA,电流与流量的关系如图4。模块中气氛切换的功能实现是通过MCU发送切换信号,控制管子2N3904的导通与关闭,来驱动VZ100电磁阀两通道的转换来完成。切换功能电路见图5。
1.2模块的软件设计模块软件分为两部分:控制软件及交互软件。控制软件包括数据采集,与比列阀,流量传感器及上位计算机的通讯,数据滤波,PID控制算法等,采用C语言;交互软件则主要用于计算机操作,便于用户进行流量设置与气氛切换的操作,同时可实时显示气氛流量曲线以及数据储存,采用VB语言编写。
2测试结果
目前模块样机配置于DSC30热分析仪上,通过此模块控制通入仪器炉体的吹扫气氛,测试时,模块的气路一,通入氮气,配合控制软件,设置气氛流量为50ml/min,观察仪器DSC基线数据约25min,采样图谱见图6所示。图谱显示基线平直度完美。DSC30共有两路气氛输入,在实验过程中设置气路一气氛(氮气)流量为50mL/min,气路二气氛(氧气)流量60mL/min。开始测试时,缺省通入气氛一,实验5min后,按气路切换键,切换为气氛二通入,可观察到软件窗口中气氛一和气氛二数值的变化,气路二采样数据(以秒为时间单位)见表一。根据测试数据可以看出,模块的气氛控制精度误差<±0.1mL/min,切换稳定时间<16s。
3结束语
本文介绍的气氛智能控制模块控制灵活,控制精度高,相应速度快,稳定性高,能很好的满足热分析仪器对扫描气氛及保护气氛的控制需求,目前已经应用于DSC30差示扫描热分析析仪器,并获得实用新型专利[3]。本模块可通过进一步的改进,更广泛地应用于其它类似需要进行气氛控制的分析仪器,市场前景广阔。
作者:杨洋单位:上海精科天美学仪器有限公司