本站小编为你精心准备了多学科交叉运用的药剂学论文参考范文,愿这些范文能点燃您思维的火花,激发您的写作灵感。欢迎深入阅读并收藏。
1细胞生物学
靶向制剂的概念起源于诺贝尔医学奖获得者德国科学家PaulEhrlich提出的“神奇子弹”(magicbul-let),近二十年来,脂质体阿霉素等药物载体制剂的上市,把肿瘤的药物治疗带入了“分子靶向药物”时代。药剂学也从传统的工业药剂学,发展到了新型的分子药剂学领域。通常根据靶向制剂在体内的靶标不同,将靶向方式分为:一级靶向(作用于特定器官和组织)、二级靶向(作用于特定细胞)和三级靶向(作用于细胞内特定部位和细胞器)。三级靶向主要是新型分子药剂学的研究领域,细胞生物学(Cellbi-ology)的学科基础有助于分子药剂学的深入发展。线粒体是真核细胞中由双层高度特化的单位膜围成的细胞器。主要功能是通过氧化磷酸化作用合成ATP,为细胞各种生理活动提供能量,是细胞生长的能量工厂。已有学者研究以线粒体为靶点的新型药物传递系统,通过作用于细胞内的线粒体,促进癌细胞的凋亡及坏死,起到靶向治疗肿瘤的目的[8]。干细胞(Stemcells)是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。肿瘤干细胞对肿瘤的存活、增殖、转移及复发有着重要作用。从本质上讲,肿瘤干细胞通过自我更新和无限增殖维持着肿瘤细胞群的生命力,肿瘤干细胞的运动和迁徙能力又使肿瘤细胞的转移成为可能。已报道通过脂质体及其靶向修饰技术,可以靶向传递抗癌药物至肿瘤干细胞[9]。细胞内涵体逃逸(osomalescape)是一些药物发挥效应的必经过程。采用制剂技术来加强这些药物的内涵体逃逸是药剂学前沿的研究热点。如在RNA传递实际应用中,必须克服递送后RNA被内涵体包埋这一问题。一些研究运用内涵体溶解肽、化学内涵体溶解剂和光诱导内涵体逃逸的策略来解决这一问题[10]。此外,将细胞穿透肽(CPP)-药物复合物靶向递送到特定器官、肿瘤、病毒感染细胞的方法对于实际治疗应用也是必要的。近年来在这方面已有很大进展,尤其是通过非共价结合形成药物CPP复合物[11]。纳米技术已经在药剂新技术中具有重要位置。由此产生的纳米药物具有增加难溶性药物溶解度、吸收和生物利用度的优势。新型的纳米材料已经用于改善疾病的诊断和治疗,通过有效传递药物、生物大分子和成像剂到靶部位的细胞。这种诊断性和治疗性的药物也叫纳米药物(Nanomedicine)。这需要部位特异性的细胞传递以及随后亚细胞的定位。探究纳米药物进入细胞的路径对于纳米药物的开发十分重要。纳米药物可以通过很多通路进入细胞,但目前并未完全清楚。纳米药物可以通过网格蛋白介导、小窝蛋白介导、内涵体通路、溶酶体通路或巨胞饮方式进入细胞[12]。
2材料学
与药剂学相关的材料学(Materials)包括药用高分子材料学、晶体材料学、生物材料学等。以高分子聚合物为基础的聚合物前药已经有二十年以上的发展历史,高分子聚合物以聚乙二醇、N-(2-羟丙基)甲基丙烯酰胺(HPMA)、聚谷氨酸等最为常用[13]。聚合物前药用于肿瘤治疗主要基于肿瘤部位的EPR效应(加强穿透和滞留效应),一般认为分子量大于20000的聚合物EPR效应最为明显。聚合物前药载药量也从5%~10%发展到30%以上,聚合物前药在溶液中可以形成0~20nm左右的纳米粒子,因此该类药物也是纳米药物的一种。聚合物前药通常以酯键、酰胺键、二硫键等相连,此外,也出现了温度敏感、pH敏感、酶敏感的连接键类型。这些类型进一步丰富聚合物前药的发展方向和内容。目前,该类药物还没有上市品种,最接近上市的是聚谷氨酸-紫杉醇前药,进入了Ⅲ期临床。很多聚合物前药因为药效降低及非靶器官的副作用终止于Ⅱ期临床[14-15]。这类药物还需进行大量和深入的研究才有可能在商品化上有所突破。难溶性药物增溶及生物利用度的改善一直是药剂学研究的热点。难溶性药物绝大多数是晶体药物,药物溶解需要克服晶格能,从规律排列的点阵中解脱出来。无定型药物(Amorphous)可以增加难溶性药物溶解度和溶出度,主要是由于其中药物的无序排列,需要克服更少能力即能溶解。但无定型状态是不稳定的,在溶液中,溶解的药物趋向于结晶(Crystalli-zation),在溶液中可以形成超饱和的状态(Supersatu-rablestate)[16]。无定型形式也是药物多晶型中的一种。晶体材料学的学科理论有助于认识和理解无定型药物的特征,指导无定型药物的设计。对超饱和状态对结晶规律的深刻认识有助于无定型药物的设计。很多研究发现[17],采用羟丙基甲基纤维素(HPMC)可以扩展超饱和状态,并可以抑制结晶的产生及生长。聚合物的类型和浓度在抑制超饱和状态下的药物结晶程度是不同的。结晶类型也分表面结晶、大块结晶、边缘结晶等。普渡大学的Taylor教授课题组[17]和威斯康星大学的YuLian教授课题组[18]是两个知名的课题组,在此领域进行了深入和细致的研究。生物材料已经广泛用作药物传递系统的载体材料。生物材料学理论基础有助于设计具有体内靶向性的药物控释系统。生物材料用于人体组织和器官的诊断、修复或增进其功能的一类高技术材料,即用于取代、修复活组织的天然或人造材料,其作用药物不可替代。生物材料能执行、增进或替换因疾病、损伤等失去的某种功能,而不能恢复缺陷部位。药物缓释支架(DES)就是很有代表性的生物材料[19]。给金属裸支架穿上一层化疗药物的“外衣”,如紫杉醇、丝裂霉素等,可以降低再狭窄的发生,称之为药物缓释支架。缓释支架是一种崭新的药物控制释放系统,给组织、器官损伤的治疗带来了新的希望,也有很多此类的基础研究[20]。美国食品与药品监督管理局(FDA)于2003年批准了DES应用于临床冠状动脉治疗之中,至今已应用非常广泛,欧美国家、新加坡、日本等药物支架的使用率在30%以内,在我国一些大医院,药物支架的使用率达到60%~90%,个别医院甚至高达100%。
3分子影像学
分子影像学(Molecularimaging)是随着分子生物学的发展而逐渐出现并发展起来的,影像技术最早是分子生物学的研究方法之一,随着技术手段的逐渐完备和多样化,形成了自身的科学规律,进而成为分子生物学的一个分支学科。分子影像学是运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学。在诊断方面,通过对肿瘤发生过程中的关键标记分子进行成像,可在活体内直接观察到疾病起因、发生、发展等一系列的病理生理变化和特征,而不仅仅显示疾病末期的解剖改变。在药物治疗方面,观察药物作用过程中一些关键的标记分子有没有改变,即可推论这种治疗有无效用;在药物开发方面,通过设计特异性探针,直接在体内显示药物治疗靶点的分子改变,通过建立高能量的影像学分析系统,可大大加快药物的筛选和开发[21]。药剂学中,新型药物传递系统的体内靶向性研究、体外摄取研究、细胞定位、细胞内吞机制研究等领域常运用分子影像学的手段。人们选择有荧光吸收的药物(如阿霉素或柔红霉素)作为模型分子,对其载药系统的细胞水平吸收与定位进行深入研究[8]。靶向释药系统的靶向性验证通常采用近红外染料或放射性核素,利用活体成像技术进行组织分布研究[22],这种研究大大缩短了研究周期,使体内过程更加直观和生动,这也是分子影像技术用于药剂学研发的成功体现。
目前,我国药物研发处于高速发展阶段,对药剂工作者提出了越来越高的要求。在新药的研发中不断融入新的理念、新的要求和新的评价手段。对药剂学专业学生的要求除了掌握传统药剂学的基本理论及实践操作外,对影响药剂学发展变革的相关学科学习也迫在眉睫。这些学科越来越影响着药剂学的基础研究与应用研究。以分子生物学、细胞生物学、材料学和分子影像学等为代表的学科已经开始渗透在药剂学的制备工艺、处方设计、质量评价和体内评价过程中。药剂学作为药物研发的下游阶段,是新药研发中最接近临床的一个环节,需要不断保持新颖性和前瞻性。经过以上探讨,新的学科对于药剂学的发展与新药研发具有明显的内在关联性,有必要在实际的教学中引入相关学科的基础和理念。多学科的渗透式教学有助于培养全面的药剂学专业人才,为新药的开发打下坚实基础。
作者:时念秋张秀荣张宏梅王丹王丽娜李景华崔佰吉雷钧涛单位:吉林医药学院药学院药剂教研室